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PERFORMANCE ANALYSIS OF DIRECT-SEQUENCE SPREAD-SPECTRUM

MULTIPLE-ACCESS COMMUNICATION VIA FADING CHANNELS

David Edward Borth, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1979

Abstract

The performance of biphase direct-sequence spread-spectrum multiple-

* access (SSMA) communication for a general class of fading channels is

investigated. The channels considered are those for which the channel

output consists of a strong stable specular signal plus a faded version of

this signal. Such channels are the result of a transmission medium which

gives rise to a major stable communication path and a number of additional

weaker communication paths. The fading channel is modeled as a general

wide-sense-stationary uncorrelated-scattering (WSSUS) channel -- a model

which is general enough to exhibit both time and frequency selectivity

and to impose no restrictions on the fading rate. A discussion of the

important parameters of the WSSUS channel is given and two important

classes of WSSUS channels are developed from the general fading channel

model: time-selective fading channels and frequency-selective fading

channels. In analyzing the performance of direct-sequence SSMA comnunica-

tions via fading channels two measures of system performance that are

considered are average signal-to-noise ratio at the receiver output and

the average probability of error.
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For the general WSSUS model, results are obtained for the average

signal-to-noise ratio at the receiver output in terms of the spread-

spectrum signature sequences and the covariance function for the fading

process. The results are then specialized to both time-selective and

frequency-selective fading channels. For these two classes of channels,

expressions are obtained for the correlation receiver output signal-to-

noise ratio in terms of the aperiodic autocorrelation functions of the

signature sequences, the covariance function of the fading process, and

the additive white Gaussian noise spectral density. Numerical evaluations

are presented for specific examples of each of these two types of channels.

The effects of fading on single-user direct-sequence spread-spectrum

and phase-shift-keyed systems is discussed and it is shown that the

spread-spectrum system yields markedly improved performance over the

phase-shift-keyed system when frequency-selective fading channels are

considered. Analytical expressions for the average signal-to-noise ratio

are derived for a SSMA system with random signature sequences, and the use

of these expressions in preliminary system design is discussed.

An expression is derived for the probability of error at the output

of a correlation receiver in terms of expectations over the

faded signal and the multiple-access interference. Due to analytical

difficulties in evaluating the expectations, however, a moment space

bounding technique is used to derive bounds on the probability of error.

For a single user direct-sequence spread-spectrum system, exact expressions

for the probability of error are given for both time-selective and

frequency-selective fading channels. These expressions are compared

with the results obtained from Nth moment space bounds.
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r~r CHAPTER 1

INTRODUCTION

1.1. Spread-Spectrum Multiple-Access Communication Systems

The advent of the synchronous communication satellite in 1963

[Spilker, 19771 has made possible the realization of practical multiple-

access communication systems. This realization of multiple-access

communication systems has been achieved principally because of the wide

coverage area, small duration of outage times, and simplicity of antenna

systems afforded by the use of synchronous orbit satellites. To date,

three major types of multiple-access schemes are either being utilized by,

or are being proposed for use with, synchronous satellites: frequency-

division multiple-access, time-division multiple-access, and code-division

multiple-access (Pritchard, 1977]. Frequency-division multiple-access

(FDMA) achieves its multiple-access capability through the use of a

separate carrier frequency for each user. Its principal advantages are

that it is compatible with existing analog trunk systems and that the

satellite design for a FDMA system is very simple. Time-division multiple-

access (TDMA) achieves its multiple-access capability through the use of

a dedicated time-slot for each user. The principal advantages of such

a system are that it fits in naturally with digital communication systems

and that it exhibits increased capacity over FDMA. The third multiple-

access scheme, code-division multiple-access (CDMA), achieves its

multiple-access capability primarily through coding. Unlike FDMA and

TDMA, however, CDMA requires no precise time or frequency coordination
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among the various users. CDMA techniques have been considered for use in

a wide variety of applications including the NASA tracking and data-relay

system (TDRS) ([Stampfl and Jones, 1970], [Chen and Burnett, 19771),

systems to provide communication to aircraft [Lebow, et. al., 19711, air

traffic control systems [Stiglitz, 1973], systems to control remotely-

piloted vehicles (Maim and Schreder, 1973], and numerous satellite

communication systems (e.g., [Drouilhet and Bernstein, 1969], [Kochevar,

19771, and [Pritchard, 1978]). In fact, a recent survey article of 29

satellite communication systems lists five proposed military satellite

communication systems that will use CDMA [Pritchard, 19781.

The most common form of CDMA is spread-spectrum multiple-access (SSMA)

which is characterized by the use of a unique code sequence assigned to each

user and modulated onto the carrier along with the digital data. By a

spread-spectrum system, we mean any system by which a data signal is

modulated onto a wideband carrier so that the resultant transmitted signal

has a bandwidth which is much larger than the data signal bandwidth

[Scholtz, 1977]. The reason for using SSMA is that, in addition to its

multiple-access capabilities, other desirable qualities are simultaneously

provided including increased immunity from interference and jamming, low

detectability, compatability with other (non-spread-spectrum) systems

operating in the same frequency band, and, with the proper choice of

modulation method, increased immunity from the effects of fading and

multipath distortion (Cahn, 1973]. The most commonly used forms of SSMA

are: direct sequence SSMA (DS/SSMA), in which a high rate code is used

to phase modulate, together with the data signal, the carrier-signal;
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* frequency-hopped SSMA (FHISSMA), in which a code sequence is used to

control a frequency-synthesized carrier signal onto which data is

modulated, and hybrid SSMA, which can be a combination of DS/SSMA and

FH/SSMA. By way of example, DS/SSMA will be used in the NASA TDRS system

[Chen and Burnett, 1977], FH/SSMA has been used in the TATS modulation

system for the Lincoln Experimental Satellites [Drouilhet and Bernstein,

1969], and hybrid SSMA will be used in the proposed Joint Tactical

Information Distribution System (JTIDS), a military communication,

navigation, and identification system [Smith, 1978].

For the remainder of this thesis we shall be concerned only with

DS/SSMA, also known in the literature as phase-coded SSMA [Pursley, 1974]

or pseudonoise SSMA [Anderson and Wintz, 1969]. In particular, we shall

be concerned with analysis of the communication performance of an

- asynchronous DS/SSMA communication system operating over a fading channel.

Such a system has been previously analyzed elsewhere for communication

over additive white Gaussian noise (AWGN) channels (e.g., [Pursley, 1974],

[Pursley, 1977], [Yao, 1977]). In the next section we shall present a

review of some of the results obtained on the performance of DS/SSMA

E conmmnications via AWGN channels.

1.2. DS/SSMA Communications via AWGN Channels

In this section we will initially review the results obtained by

Pursley (1974, 1979) for the communications performance of an asynchronous

DS/SSMA communication system operating over an additive white Gaussian

noise (AWGN) channel. The purpose of this review is threefold: to review

4
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the principles of operation of a DS/SSMA communication system, to

introduce notation that will be useful in the analysis of DS/SSMA

communications via fading channels, and to provide a basis of comparison

of performance for DS/SSMA communications via fading channels. Later

in this section we shall present a brief review of other published

literature on the performance of DS/SSMA systems over AWGN channels.

We shall consider the DS/SSMA system model shown in Fig. 1 for K

users. The k-th users' data signal bk(t) is a sequence of unit amplitude,

positive and negative, rectangular pulses of duration T, given by

bk(t) = _ bkIpT(t - AT), (1.1)

where bk,I E [+i,-13 denotes the k-th user's information sequence and

PT (t) = 1 for 0 < t < T and p T (t) = 0 otherwise. Each user is assigned

a code waveform ak(t) which consists of a periodic sequence of unit

amplitude, positive and negative, rectangular pulses of duration T • Thec

code waveform for the k-th user may therefore be written as

(k))

*a.k(t) = a. (k) (t.JTc), (1.2)

where (a(k)) is the discrete periodic signature sequence assigned to the

k-th user. We assume that each signature sequence has period N = T/T
c

so that there is one code period per data symbol.
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The data signal bk(t) is modulated onto the phase-coded carrier

ck(t), which is given by

ck(t) = /2 ak(t)cos(wct + 9k)  (1.3)

so that the transmitted signal for the k-th user is

Sk(t) = A/Th ak(t)bk(t)coS(wct + e (1.4)

Here P represents the common signal power, w represents the common center
C

frequency, and ek represents the phase of the k-th carrier.
k1

For asynchronous systems, the received signal r(t) at the input to

the receiver in Figure I is given by

K
r(t) = n(t) + Z. VP ak(t-Tk)bk(t-Tk)cos(wct+yk) (1.5)

k=l

where CPk _ ek.wcTk, Tk accounts for the nominal propagation time for the

k-th signal, and n(t) is additive white Gaussian noise with a two-sided

spectral density N0/2.

If the received signal r(t) is the input to a correlation receiver

matched to si(t), the output Zi at the sample moment t = T is given by

[Pursley, 1977] as

T
Z f r(t)ai(t)cos w, tdt

K

i,0T k= [bk, Rk,(T k)+k,0Rk,i(Tk)]Cos kk

k~i
T

+ n(t)ai(t)cos w tdt. (1.6)+ 0 c
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Since we are concerned with relative phase shifts modulo 2TT and

V relative time delays modulo T, we have assumed in (1.6), without loss of

generality, that Q. = 0 and T. = 0. Furthermore, as in [Pursley, 1977],
I L

* in writing (1.6), we have neglected the double frequency components. The

two terms P.-, and Ri appearing in (1.6) are the continuous-time partial

cross-correlation functions of the code waveforms, defined by

Rk'i(T) = j0 ak(t-')ai(t)dt (1.7)

T
R,i (T) = T ak(t-T)ai(t)dt (1.8)

T

for 0 - T 5 T. For convenience, we shall denote the continuous-time

partial autocorrelation functions Rkk and by Rk and k' respectively.

For values of T in the range 0 I LT <-- T !- (1+1)T -- T, the two cross-i c c

* correlation functions Rki and can be written as

R ki(T) = Cki(I'N)Tc + [C ki (+l-N)-Ck'i (IN)](T'ATC) (1.9)

,i() = Cki(A)Tc + [Cki(+l) - Ck,i (I)](T-Tc ) (1.10)

where Cki is the discrete aperiodic cross-correlation function for the

sequences (a (k )) and (a.i ) defined by

seqencs (j0 ( jL
N-l+L1(k) 

(i)E aJ  a+, 0 5-- A :-- N-I (1i

N - 1+1 k
C k,i (1) = E aki aI-N <5 A < 0

j=0

0 N.
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The discrete aperiodic autocorrelation function C will be denoted by C
k,k k*

Up to this point, we have not indicated any means of measuring the

DS/SSMA system performance. Three performance measures that have been

considered in the past are average signal-to-noise ratio [Pursley, 1974],

[Pursley, 1977], worst case performance [Pursley, 1977], and average

probability of error [Yao, 1977]. For DS/SSMA systems with AWGN channels,

the work of Yao (1977), coupled with the results of Pursley and Sarwate (1977b)

on the efficient computation of signal-to-noise ratio establishes that for

systems of interest, the signal-to-noise ratio is an accurate measure of per-

formance which is relatively easy to compute. Using the average signal-to-

noise ratio (SNR) at the output of the i-th correlation receiver as the

measure of system performance, as in [Pursley, 1977], the phase angles,

time delays, and data symbols for the k-th signal (k#i) are modeled as

mutually independent random variables which are uniformly distributed on

[0,2 I, [0,T], and [+l,-i], respectively. SNR. is then defined by

SNR A EZlb, = +1/(VarZlb +) (112)(VairO iIi, 0 -1), (1.12

where, without loss of generality, we have assumed bi,0  +1. From (1.6)

we find that

E[Z~ib., 0  +13 -qrI_71 T (1.13)

and

VartZilbi, 0 = +1 3()E 0[Rk .i ( T ) + ki(T)]dr + ;N0 T

Kki T

4k-l £-R (L~)T I (T) + §.',i(T)]& + NQT. (1.14)
k~i .0 ATc
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Using (1.9) and (1.10) in (1.14), (1.14) reduces to

PT 2 K NT( 5

VartZilbi,o +13 =12N 3  k, + (1.15)

i,0 12N k=1
\k#i

where

r k 2 tk,i(0 ) + (I) (1.16)

and

) N-I

P ki(n) = CkiC) Cki(t+n) , (1.17)

which is a function of the discrete aperiodic cross-correlation functions

C In [Pursley and Sarwate, 1977b], it was shown that p (n) can be

k,i' ~
also expressed by

N-1
Sk,i(n) = E Ck(L) Ci (1+n) (1.18)

L=1-N

which is a function of the discrete aperiodic autocorrelation functions of

the code signature sequences. From (1.12), (1.13), and (1.15), the

average signal-to-noise ratio at the output of the i-th correlation

receiver is found to be

K NO  
"

SNRi, (6N3) " I 31 r + 0 (1.19)
k=l'
k~i

whered =PT is the signal energy per bit.

In addition to the results obtained by Pursley (1974, 1977) indicated
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above, many ocher results have been obtained on the performance of

DS/SSMA conmmunications via AWGN channels. In 1977, Yao (1977) presented

several approaches for evaluating bounds on the average probability of error

(P e) of a DS/SSMA system using an isomorphism theorem from the theory of

moment spaces. Under a certain set of conditions (K large, N large, and

N >> K), Yao verified that P could be approximated quite well by the expres-e

sion Pe = I'I(SNRi), where I is the standard Gaussian cumulative distribution

function and SNR. is given by (1.19). Further discussion of Yao's work

may be found in Chapter 4 of this thesis. Also in 1977, Roefs and Pursley

(1977) evaluated the performance of a DS/SSMA system employing binary

random sequences as signature sequences. They found that the expression

obtained for the average signal-to-noise ratio using random binary signa-

ture sequences,

NO K-1
SNR= ' (1.20)

was a very accurate approximation to SNR. for typical system values of

d1N0, N, and K and thus is useful in the preliminary design of a DS/SSMA

system. In 1978, the results of (Pursley, 1977] were extended to the

quadriphase DS/SSMA system case ([Pursley and Garber, 19781, [Garber,

1978a]). Generally speaking, the results obtained for the quadriphase

DS/SSMA system case are very similar to the biphase DS/SSMA system case

with the exception that a broader class of signature sequences can be

employed by the quadriphase system, offering promise of improved perfor-

mance over AWGN channels. Other results that have been obtained on the

performance of DS/SSMA communication systems over AWGN channels deal

primarily with properties of the signature sequence correlation functions



appearing in (1.19) (e.g., see [Roefs, 1977], [Pursley and Sarwate,

1977a], [Pursley and Roefs, 1979], [Sarwate and Pursley, 1979]). A

tutorial treatment of many of these properties as well as an extensive

bibliography of other papers treating correlation properties of signature

sequences may be found in [Sarwate and Pursley, 1979].

.- 1.3 Direct Sequence Spread Spectrum Communications via Fading Channels

In Section 1.1 we noted that one of the reasons for considering

SSMA as a miltiple-access technique was that, with the proper choice of

modulation method, SSMA could be designed to reduce the effects of fading.

In fact, one of the earliest applications of spread spectrum techniques

was in communicating over multipath channels by employing a pseudonoise

modulated frequency-shift keyed (FSK) signal [Price and Green, 1958]. In

this section we shall review some of the literature on the performance of

* direct sequence spread-spectrum (DS/SS) communications via fading

channels.

One of the earliest studies on the performance of DS/SSMA over

multipath channels was one conducted by Massey and Uhran (1969) for NASA

in 1969. This study was concerned with the design of good sets of

signature sequences which would permit reliable communication over

uiltipath channels. Essentially this study culminated in the realization

that the odd cross-correlation function of the signature sequences,

defined in [Pursley, 1977], is just as important as the periodic cross-

correlation function for communication over multipath channels or for

O - asynchronous DS/SSMA communications. Some of these results have also

been reported in [Massey and Uhran, 1975]. Kadar and Schreiber



12

(1971) considered the effects of a single fading path together with a

single nonfading path on the performance of a DS/SS system employing a

post-detection correlation receiver. Their primary result was an expres-

sion for the signal-to-interference ratio, neglecting thermal noise, at

the output of the post-detection correlation receiver. Cahn (1973) presented

"heuristic" analyses of the effects of direct-plus-specular multipath and

direct-plus-diffuse multipath on the performance of a single-user DS/SS

communication system. Cahn assumed that the fading components of the

received signal were Gaussian and hence could be treated as additional

noise in deriving an expression for the probability of error at the output

of a correlation receiver. Jacobs (1974), in a tutorial paper considered

the effects of a direct-plus-specular multipath channel model on a DS/SS

system. Finally, Chang (1979), considered the effects of fading on the

performance of a digital matched filter in a communication system employing

amplitude shift keying (ASK) together with a maximal-length shift register

signature sequence.

Within the past several years, there have appeared several studies

on the effects of fading on DS/SSMA conmmunication systems ([Orr, 1977],

[Welch, 19781, [Gardner and Orr, 1979]). All of these studies have

concentrated on determining the system signal-to-noise ratio and/or

probability of error for multiple-user DS/SS systems communicating via

a class of channels known as nondispersive, slow-fading channels (see

Chapter 2).

The literature survey given above is intended to indicate the

amount and direction of research that has already been performed on

DS/SS communications via fading channels. It is also intended to
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indicate some of the deficiencies in the analysis of DS/SSMA communications

p over fading channels. In particular, in all of the analyses presented to

datc, little, if any attention has been given to detailed consideration of

the fading channel model being used. While the assumptions of direct-

plus-specular fading or nondispersive fading may be valid for some physical

channels, the channels over which spread-spectrum systems are employed

often exhibit radically different channel characteristics. For example,

because the bandwidth occupied by a DS/SSMA system is typically quite

large, the channel used may exhibit frequency selectivity due to the

presence of a distribution of channel paths over which the signal propa-

a w gates. Clearly, such a characteristic is not incorporated in either the

direct-plus-specular channel model or the nondispersive fading channel

models. Furthermore, the published results noted above have either made

certain very specialized assumptions in deriving the results above or

have not used correlation receivers in the DS/SSMA system model. In

this thesis we will analyze the performance of the DS/SSMA system model

shown in Figure 1 for a broad class of fading channels. In the next

section an outline of the thesis research is given.

1.4 Outline of the Thesis

Chapter 2 describes a comprehensive model of a fading channel

in terms of the statistical properties of the channel with the viewpoint

of characterizing typical fading channels over which DS/SSMA systems

might be used. This characterization includes development of the impor-

tant wide-sense-stationary uncorrelated-scattering (WSSUS) channel model

and three subclasses of the WSSUS channel model: the time-selective
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fading channel model, the frequency-selective fading channel model, and

the nondispersive fading channel model.

Chapter 3 analyzes the performance of DS/SSMA communications via

fading channels using the average signal-to-noise ratio at the output of

a correlation receiver as the system performance measure. In this analysis,

the DS/SSMA system model of Chapter 1 is used together with the WSSUS fading

channel model of Chapter 2. After analysis of system performance over

doubly-spread channels is cons'dered, performance of the DS/SSMA system

over time-selective and frequency-selective fading channels is analyzed.

A comparison of the performance of single-user phase-shift keyed (PSK) and

DSISS communication systems over fading channels is given. An analysis of

the performance of a DS/SSMA system using random binary sequences as the

signature sequences is also given.

Chapter 4 analyzes the performance of DS/SSMA communications via

fading channels using probability of error at the output of a correlation

receiver as the system performance measure. Bounds on the probability of

error are obtained using an isomorphism theorem from the theory of moment

spaces. The "Gaussian approximation" for the probability of error,

Pel -1 (SNRi), for DS/SSMA communications via fading channels is dis-

cussed.

In Chapter 5, a summary of the major results of this thesis is given.
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CHAPTER 2

INTRODUCTION TO FADING CHANNELS

U 2.1. A Description of Fading

In many analyses of the performance of various types of communication

systems, the communication channel is frequently modeled as a linear time-

V. invariant system whose transfer function consists of a frequency-independent

magnitude less than unity proportional to the propagation loss and a

delay term proportional to the propagation delay between the channel

-_modulator and the channel demodulator. In addition, the channel is usually

considered to be corrupted by additive stationary Gaussian noise. While

* this simple additive white Gaussian noise model is quite accurate for

channels such as deep space communication channels, it is often an overly-

simplified model for high-frequency (HF) long distance communications

achieved via the ionosphere and for microwave communications beyond the

horizon achieved through the use of tropospheric scatter. In the latter

two channels, the received signal has been experimentally shown to undergo

* ma process known as fading. Fading is a term generally used to describe

* i  any linear channel whose performance is other than that of the ideal

channel described above. A fading channel may exhibit such properties as

selective frequency response, intersymbol interference in digital

communications, spreading of signals in the frequency domain, a time-

*i varying amplitude response, or any combination of these attributes. The

description of a comprehensive model for a fading channel is given in this

chapter. The remainder of this section will describe fading from a

phenomenological point of view and give special examples of fading

channels.
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In addition to the two examples of fading channels given above, the

HF ionospheric channel and the microwave tropospheric scatter channel,

there exist several other types of channels which exhibit fading. One

example is a very high frequency (VHF) communication link between an

aircraft and a synchronous satellite relay [Bond and Meyer, 1966]. Such

a link has been analyzed and has been shown to exhibit fading due to the

presence of a secondary propagation path between the satellite, the

earth's surface, and the airplane, in addition to the primary propagation

path between the airplane and the satellite. Another example of a

fading channel, this time an artificially created one, is the communica-

tions channel temporarily created by an experiment known as the West

Ford Project [Lebow, et. al., 19641. In this project, 20 Kg of 2 cm

long copper dipoles were injected into an orbit about the earth and

transhorizon communications were conducted at 8GHZ using this orbiting

dipole belt as a scattering mechanism. Fading was predicted prior to

the experiment and confirmed experimentally during the course of the

experiment. A third example of a fading channel is that of line-of-

sight microwave communication links. Although such links are designed

to provide reliable point-to-point communications, occasionally these

links undergo severe fading due to the formation of tropospheric inversion

layers permitting multiple transmission paths between the transmitting

and receiving antennas (Jakes, 19781. As a result of these multiple

paths, the received signal is a vector sum of several delayed versions

of the transmitted signal, and consequently, depending on the phase

relationship of the received multiple signals, the channel exhibits
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fading. Recently, Rummler (1978, 1979) has shown that the fading effects

exhibited by line-of-sight microwave channels could be modeled well by a

three-path channel model. A final example of another channel exhibiting

fading, and one of much current interest, is that of communication at-

millimeter to optical wavelengths in line-of-sight paths through the

non-ionized atmosphere [Strohbehn, 19681. In this channel, fading is

present due to random fluctuations in the dielectric constant of the

atmosphere. These four examples serve to demonstrate that fading is not

limited to just the two "classical" fading channels, the HF ionospheric

and microwave tropospheric scatter channels.

Fading encountered over an HF ionospheric channel, for example, has

been experimentally verified to be of two types -- short duration rapid

rfading over time spans less than a second and long duration slow fading

over time spans from one second to an hour or longer. The statistics

of the two fading processes are different; hence these two types of fading

must be accounted for in the channel model. It will be shown in Section 2.3

that the two types of fading lead to a "quasi-wide-sense-stationary"

fading channel model for practical radio channels.

The origin of the fading mechanism for most of the fading channels

mentioned above may be traced to the scattering of an electromagnetic

wave off a random medium. To see how this leads to fading, consider the

* following: let a single continuous sine wave be allowed to be scattered

by a random medium. The scattered components may be resolved into

in-phase and quadrature components. The instantaneous values of the two

* . types of components may be shown to be uncorrelated. Using the central

limit theorem, as the number of in-phase and quadrature components becomes

0o
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large, the sum of the in-phase components approaches a Gaussian random

process. Similarly, the quadrature components add to form an identically

distributed Gaussian random process. Hence, the in-phase and quadrature

random processes collectively form a zero-mean complex Gaussian random

process [Van Trees, Sec. A.3.1, 1971]. If the random medium is a single

surface and is time-invariant, the received signal, after scattering, can

be shown to have a Rayleigh-distributed amplitude and uniformly distributed

phase, i.e., the signal is undergoing fading. Further discussion of the

modelling of scattering of sinusoids off of random media as a complex

Gaussian random process may be found in [Stein, 1966]; in the following

we will accept the fact that scattering results in a zero-mean complex

Gaussian random process, provided that a "sufficient number" of random

scatterers exists for the particular geometry under consideration.

2.2. Statistical Model of Fading

In this section, we develop the most general model of the fading

channel with the idea in mind that the model should be applicable to the

analysis of DS/SSMA communications over fading channels. In subsequent

sections, the model developed here will be simplified by making appropriate

assumptions.

To begin with, since the signals under consideration are bandpass signals

(i.e., narrow-band signals centered at some frequency w 0), complex

envelope notation is the most convenient method of describing these

signals. To clarify the notation to be used, several standard properties

([Van Trees, 1971], [Stein, 1966], [Stein and Jones, 1967]) of bandpass

signals are given below in complex envelope notation.
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The transmitted signal may be represented in complex envelope

notation as

S (t) =Re~u (t)exp(j2Trf 0 1, (2.1)

where u 0 (t) is a lowpass signal having a Fourier transform U 0 (f),

u 0(t) U 0 U(f)exp(j2 TTft)df. (2.2)

By narrowband signals, we mean that if we define the normalized bandwidth

Of u (t) as

JuOf 12 2df
Bn 2 (2.3)

then

B n _< f 0'(2.4)

fi Given a linear, time-invariant system with an impulse response h(t)

and a transfer function 1-(f), where

h(t) S J H(f)e' ~fdf Ret2h e(t)exp(j21Tf 0t)) (2.5)

and H(f) is a bandpass function around fo the output y(t) due to an

input s (t) given by (2.1) is
00

y(t) Re y (t)eWoI(26

where

Ye(t) S Jh he (t-a )u 0 (a) da (2.7)
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Equations (2.6) and (2.7) illustrate the advantage of using complex

envelope notation for bandpass signals and systems; to evaluate the output

of a bandpass system due to a bandpass signal input, we simply convolve

the impulse response envelope with the input signal envelope, multiply by

exp(j2TT f0t) and take the real part of the resulting product.

For a linear time-varying bandpass system with impulse response h(t,T)

where

h(t,T) = Re[2h (t,T)exp(j2T( t- ))], (2.8)
e

the expression corresponding to (2.7) is

Ye(t) = I he(tu)u0 (u)du. (2.9)

In (2.8), h(t,T) denotes the output at time t due to an impulse at time T.

Finally, we will need the following algebraic identity: Given two

complex numbers X and Y, then

Re[X]Re[Y] - Re[XY] + Re[XY ]. (2.10)

Other properties of complex envelope notation will be developed as needed.

We now proceed to the development of the fading channel model.

Consider the propagation model shown in Figure 2. In the figure, a signal

s0 (t) given by (2.1) is transmitted and scattered by a moving random

medium which is assumed to be able to be modeled as a layered scatterer,

where each layer has an incremental thickness dr. Associated with each

layer is a propagation delay T which is in addition to the nominal

propagation delay t0 between the transmitter and the receiver. The

received signal due to scattering from the layer whose incremental
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Moving dr
Scattering -r/2 Seconds/I
Medium

m0
to

Transmitter Receiver

FP - 6562

Figure 2. Propagation model of a fading channel.
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propagation delay is T is given by

s(t,T) = Re[P(T,t-t 0 )u 0 (t-t 0 -T) exp(j2rrf 0 (t-t 0 -T ))]d (2.11)

where P(T,t) is the time-varying transmission coefficient for a wave

scattering of a layer whose incremental propagation delay is T. Several

comments about the form of (2.11) are in order. First, (2.11) assumes that

the thickness dr and its corresponding propagation delay dr may be chosen

small enough such that P(T,t) is constant in its first argument over the

delay dT. This allows the effect of scattering off a single layer to be

modeled as a simple time-varying multiplicative factor as opposed to some

form of superposition of responses. Second, it is important to note that

. the received signal s(t,T) is a function of two arguments: the first

denotes time and the second denotes the incremental propagation delay

due to the layer that the transmitted signal is being scattered from.

Hence the received signal is both time-varying due to the fact that the

scattering volume was assumed to be moving, and layer dependent since the

scattering medium was assumed to be able to be modelled as consisting of

differential layers. Third, the time origins of the various terms of

(2.11) should be noted. For a received signal at time t due to scattering

from a layer having a total propagational delay of to + T associated with

it, the signal would have to be transmitted at time t-t0 - T . Thus the

arguments of u0 (,) and exp(j2rrf(-)) are the transmitted time origin.

The second argument of P(T,t-t0 ) refers to the nominal time at which

the received signal was transmitted. Such a time origin is by no means

unique; other authors have made the time origin of the scattering process
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the actual time origin of the transmitted signal t-t0 -T [Kailath, 19611

or the time at which the transmitted wave was scattered off a reasonably

well-defined medium [Van Trees, Ch. 13, 1971]. All such time origins

are essentially equivalent, although one choice of time origin may be

- fmore appealing to the intuition for a given type of scattering medium.

Finally, the statistical nature of P(T,t) must be determined. From our

discussion in Section 2.1, we assume (T,t) to be a zero-mean complex

Gaussian random process. Inherent in this assumption is the fact that

P( ,t) has a Rayleigh-fading envelope and a uniformly distributed phase,

both of which are time varying due to the presence of a moving random

medium. Hence, the term exp(j2Trf 0T) may be absorbed into P(T,t) in (2.11).

The total received signal is a superposition of the responses due

to all the scattered layers:

s(t) = I s(t,')dT = Re[ (Tt-t 0 )u 0 (t-t 0 - )exp[j2 Ttf 0 (t-t0) dT]. (2.12)

L-cc

Equation (2.12) may also be written in the form

s(t) Re[u(t-t0)exp j(2nf 0 (t-t 0 ))] (2.13)

where

u(t) = P (T,t)u0 (t-T)dT = J (t-Tt)u0 (T)d . (2.14)

Comparing (2.13) and (2.14) with (2.6) and (2.9), it is readily

seen that P (T,t) represents a time-varying equivalent low-pass impulse

response for the general fading channel. Applying an impulse at time a

to (2.14), we obtain
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u (t) = i 8(tt) 8(t-Ce-T)dT = (t-ae,t). (2.15) -

That is, $(t-a,t) is the response at time t to an impulse applied at

time ct.

Equation (2.12) represents the most general model of a fading channel

that we will discuss here. Before proceeding further, experimental

evidence justifying the use of this model as well as suggesting other

models will be examined briefly. To begin with, if the random medium is

slowly varying with time and can be modeled as consisting of a single

layer, (2.12) reduces to

s(t) = Re[Pu 0 (t-t0)exp j2rrf 0 (t-t0)] (2.16)

where P is a zero-mean complex Gaussian random variable. The assumptions

necessary for the transition from (2.12) to (2.16) will be examined in

greater detail in Section 2.7. Letting the transmitted signal be a

continuous sine wave at a frequency fo, (2.16) becomes

s(t) -Re[Pexp j2 r f (t-t ) . (2.17)

It can be shown that the amplitude of a zero-mean complex Gaussian random

variable is Rayleigh-distributed and the phase uniformly distributed.

Hence (2.17) predicts that the amplitude of the received sine wave is

Rayleigh distributed. Experimental evidence (e.g. [McNicol, 1949],

[Grisdale, et.al., 19571) for the HF ionospheric channel tends to support

this prediction; at the same time, experimental data [McNicol, 1949] for

many fading channels exhibit a Rician amplitude distribution. Rician

S4fading is usually considered to be due to a specular component in the

.4



25

received path, i.e., the presence of a fixed non-random scatterer in the

transmitter-receiver propagation path. In this case (2.12) may be

modified to include a deterministic component in the received signal:

s(t) = Re[(Au(t-t0) + (T,t-t0 )u 0 (t-t 0 -T))dT exp(j2nf 0 (t-t0)] (2.18)

where A is the transmission coefficient associated with the specular

path. The presence of a specular component is necessary for coherent

communications including DS/SSMA communication systems; accordingly

(2.18) will be used in subsequent work.

-The above comments are not meant to suggest that all fading is

Rician or Rayleigh in nature; on the contrary, experimental data for

the HF ionospheric channel and the mm-to-optical wave line-of-sight

S. channel indicate that the amplitude of the received signal is lognormally

distributed in many instances. Stein (1966) suggests that deviations from

a Rayleigh amplitude distribution for the HF ionospheric channel may be

due to an insufficient number of scatterers in a scattering "layer"

to support the complex Gaussian random process hypothesis stated in

Section 2.1. For the line-of-sight mm-to-optical wave channel,

Strohbehn (1968) has shown that the channel may be modeled as consisting

of a very large number of randomly moving slabs. The transmitted signal

is then modulated by the product of the random transmission coefficients

of each of the slabs. Assuming the transmission coefficients to be

independent of each other, the logarithm of the overall channel amplitude

transmission function is the sum of the logarithms of the slab transmission
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functions and, using a central limit theorem argument, is thus normally

distributed. The channel transmission function is then seen to be

lognormally distributed in amplitude. Despite the fact that some channels

may be modelled as exhibiting a lognormal amplitude distribution, for the

remainder of this study, we assume that the fading channels of concern

exhibit predominately Rician fading.

In determining the performance of cormnunication systems over fading

channels, frequent use is made of the second order statistical properties

of the channel model. In particular, assuming P(T,t) to be a zero-mean

complex Gaussian process, given u0 (t), u(t) given by (2.14) is also a

zero-mean complex Gaussian process which is completely characterized

statistically by its covariance function. What is not commonly realized

however, is that for a bandpass process represented by complex envelope

notation, two covariance functions are needed to completely characterize

the second order properties of the process. To see this, the covariance

of s(t) given by (2.12) is defined in the usual manner as

Rs(tl,t 2 ) = E[s(t 1 )S(t 2 )). (2.19)

Using (2.12) and (2.10) in (2.19), we obtain

r..

Rs(t, t 2 ) Re= f (P (T1.t-t0)P(T2t-t0)u0(t-t0- )u0(t-t0T

"exp[j TT f 0 (tl+t 2 -2t 0 ) ]dT dr2j

+ Re I E(P(Tl,t-t 0) (T 2 t 2 -t 0 )u 0 (t1 -t 0 -T1 )u 0 (t 2 -t 0 -T 2 )

'exp[j2 TT f 0 (t 1 -t 2)]dT 1 dT (2.20)
LJ

4
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Note that to evaluate (2.20), two covariance functions are needed,

A(T1,T ;t 't) EtP(TV't )P(T2 3t2) (2.21)

and

A(T1,T ;tilt) = E(P(T 1,t )P(T 2,t). (2.22)

*A(-) given by (2.22) is defined to be the space-time cross-covariance

function (or simply the covariance function) of the fading process

[Stein, 1966]. In most applications, the narrow-band process P(T,t) is

so constituted that ([Bello, 1963], [Van Trees, 1971])

AT1T2tXt2 0. (2.23)

Examples of processes which do not satisfy (2.23) are given in

* ([Bello, 19611, [Brown and Crane, 19693). It is easily seen that (2.23)

* is a necessary condition for stationary bandpass processes. For by representing

* the equivalent bandpass impulse response in complex envelope notation as

B(T,t) = RetP(T,t)exp(j2rrf Ot)) (2.24)

as in (2.8), the autocorrelation function of B(T,t) is given by

R B(T V tl;T 2 't2 Re[kEf(' 1,t 1 )0(T 2 t 2 )exp(j2Trf 0 (t 1 + t2

+ Re[kEf.P(T 1,t do (r2 ,t 2 ))exp(j2 rrf 0 (t 1 - t 2 M)

=RefA( 172 ;tilt 2 )exp(j2 TT f 0 (t1 + t2

+ Re[A( ,rT 2;tl t 2)exp(j2TTf 0(t 1 - 2M). (2.25)
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In order for R B(.) to be a function only of the time difference t1 - V

A(') must vanish in (2.25). A different proof of this result utilizing

the spectra of the bandpass processes may be found in [Van Trees, Sec. A.3.1,

1971]. Grettenberg (1965) has proven that a necessary and sufficient

condition for (2.23) to hold is that P(T,t) and e Jo(T,t) be identically

distributed for all real e. A more direct proof of this latter result may

be found in [Miller, Th. 11.4.4, 19741.

In the sequel, it will be assumed that (2.23) holds for all complex

envelope processes that we shall encounter. There are three reasons for

this: First, in virtually all the literature on fading channels (e.g.,

[Bello, 19631, [Kennedy, 1969], [Stein, 1966], [Van Trees, 1971]) this

assumption is made either explicitly or by modelling the equivalent

bandpass impulse response as a stationary process. Second, if A(-) is

non-zero, much of the appeal of the representation of bandpass processes

* oby complex envelope notation is lost since two covariance processes must

now be specified whereas the real bandpass process requires only one.

Finally, and probably the most important reason from a practical standpoint

is the fact that even if A(-) were non-zero, it is doubtful that a

meaningful measurement of (') could be made over an actual fading

channel, considering the difficulty in measuring A(*) [Bello, 1971].

One other covariance function associated with the general fading

channel model given by (2.12) is the frequency-time cross-covariance

[Stein, 1966] defined by

RF(fI'f2 ;tl't 2) E iH(fl;t)H (f2 ;t2)J (2.26)

where

H (f;t) ( ;t)exp(-j21rf )d (2.27)
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is the range Fourier transform of the equivalent low-pass impulse response

-(T,t) for the channel. Using (2.27) in (2.26) we obtain

RF(fl'f2;tl't2) = j A(lT 2 ;tlt 2)exp(j2 T(flrl-f2 r2 ))dT 1 dT2  (2.28)
-4= -Cc

which is recognized to be the double Fourier transform of the space-time

cross-covariance function.

In practice the very general fading channel model developed above

is difficult to use in the performance analysis of communication

systems due to the mathematical complexities involved. Furthermore,

as has been shown by Bello (1963), a simpler model is warranted for

most radio channels. In the next section, we will develop such a

model.

2.3. The WSSUS Fading Channel

We now develop the wide-sense stationary uncorrelated scattering

(WSSUS) fading channel model from the general fading channel model (2.12)

presented in Section (2.2). In this development, we will also define the

wide-sense stationary (WSS) channel and the uncorrelated scattering (US)

channel.

In Section 2.1 we noted that some channels exhibit two types of

fading: long-term fading and short-term fading. Short term fading over

these channels is often such that the short term fading statistics are

approximately stationary over time. Hence, it is convenient to define

a subclass of the general fading channel model known as wide-sense

stationary (WSS) channels. Bello (1963) defines the WSS channel as a

* cha-iel whose correlation functions RF(.) and A(') are invariant under

a translation in time. The space-time cross-covariance function given
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by (2.22) satisfies

A( l,T 2 ;tl,t 2 ) = A(TI,T 2 ;tI-t 2 ) (2.29)

while the frequency-time cross-covariance function given by (2.26) satisfies

RF(flf 2 ;tlt 2) = RF(flf 2 ;tl-t 2) (2.30)

for the WSS channel.

While developing the general fading channel model in Section 2.2,

we assumed that the scattering medium could be modeled as consisting

of differential layers. A reasonable assumption for many channels is to

assume that the complex Gaussian process (T,t) is independent of P(a,t)

for T # a. Note that this is equivalent to assuming that the effect of

scatterers in one differential layer is independent of the effect of the

scatterers in all other differential layers. The space-time cross-

covariance function for such a channel is given by

A(Tl, 2 ;tl 3 t 2 ) = A( 1 ;tl,t 2 )8 (T 1 - T 2 ). (2.31)

Channels whose space-. me cross-covariance functions satisfy (2.31)

are known as uncorrelated scattering (US) channels [Bello, 1963]. We

remark in passing that the US channel is the wide-sense dual of the WSS

channel using the definitions of duality given by Bello (1964).

Channels which exhibit both WSS channel characteristics and US

channel characteristics are known as wide-sense stationary, -orrelated

scattering (WSSUS) channels [Bello, 1963]. Using (2.29) and . 31), the

space-time cross-covariance function for a WSSUS channel is given by
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A(Tl ;tl't = (TVtl-t 2 )6(T- 2 ) (2.32)

where for convenience we have let P(T,t 1 -t 2) A(TlT 2 ;tlt 2 ) for the

special case of a WSSUS channel. Note chat for WSSUS channels, two

assumptions on A(-) are being made: (1) the scattering processes due to

different layers are statistically uncorrelated and (2) the scattering

processes in each layer are wide-sense stationary. Since P(T,t) is a zero-

mean complex Gaussian process which satisfies (2.23), wide-sense stationarit,

of (Tt) implies strict-sense stationarity of P(T,t) [Miller, 1974].

Although the above channel models simplify the determination of the

O performance of communication systems considerably, they would be of

little value unless these models correspond to actual fading channels.

Fortunately, most radio channels appear to exhibit WSSUS channel properties

([Bello, 19631, [Stein, 19661). As noted in Section 2.1, radio channel

fading is often characterized by the superposition of short-term fading

on long-term fading. The short-term fading is usually found to exhibit

[ stationary statistics while the long-term fading is often highly

non-stationary, depending upon the time interval of interest. Bello (1963)

has introduced the term quasi-wide-sense stationary uncorrelated scattering

(QWSSUS) to describe such a channel. As might be expected, a QWSSUS

channel has WSSUS channel characteristics over time intervals on the

order of the duration of short-term fading. Over longer time intervals,

the channel correlation functions no longer exhibit stationarity.

However, Bello (1963) has noted that the performance of communication

systems over QWSSUS channels may be evaluated by computing system

0'
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performance by modeling the channel as a WSSUS channel, and then averaging

the short-time system performance over the long-term fading statistics

of the channel. In light of this, for the remainder of this chapter,

we will consider the WSSUS channel model only. An additional reason

for considering this model is that the WSSUS channel is the simplest

nondegenerate channel which exhibits both time- and frequency-selective

behavior.

2.4. Doubly-Spread Channels

In the previous section, we developed the WSSUS fading channel

model from the general fading channel model. In this section, we

discuss the most general class of WSSUS channels, known either as

doubly-spread channels (Van Trees, 1971] or doubly-dispersive channels

[Kennedy, 1969]. Our goal is to characterize the various parameters

of doubly-spread channels and to introduce notation often used in

conjunction with discussions of fading channels.

A word about terminology is first in order. Doubly-spread channels

are so called because they spread the time and frequency waveforms of

a signal transmitted through the channel. Demonstration of this

spreading in both domains must wait until discussion of the singly-spread

degenerate channels which exhibit spreading in only one domain.

For the doubly-spread channel, the space-time cross-covariance

function of the channel is given by (2.32). The scattering function

SDR(T,f) of the channel is defined to be

SDR(T,f) -- e p(J277ftP( ,t)dt, (2.33)
-u

where p(T,t) is defined implicitly by (2.32). Note that the scattering

function is the temporal Fourier transform of p(T,t).
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The scattering function provides a means of characterizing the

Doppler spread of the channel, as will be seen shortly. It should be

noted that most of the results to this point and for the rest of this

chapter could just as well have been developed in terms of the channel

scattering function instead of the channel covariance function; see

Kennedy (1969) for such an approach. Because the channel scattering

function and the channel covariance function are Fourier transform pairs,

such parallelism is to be expected.

If the scattering function is concentrated in one region of the

',f plane, it may be characterized grossly in terms of its moments. We

make the following definitions [Van Trees, 1971]:

The mean delay is defined to be

5 nR _a J T SDR(' f)dTdf. (2.34). 20b -

The mean-square delay spread is defined to be

, L 2 S (,f)dTdf - 2 (2.35)2% -2

The mean Doppler shift is defined to be

' .mD __ Jb'f SDR(T,f)dTdf. (2.36)

The mean-square Doppler spread is defined to be

B f 2S (T,f)dTdf - 2 (2.37)
2a2 . DR
b
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In (2.34)-(2.37),

2cr =b J SDR(T,f)dTdf (2.38)

In addition, we will define the duration T and the bandwidth W of a

narrowband bandpass signal given by (2.1) to be

T E 1  t 2u(t)12 dt (2.39)
t -w

and

W :1Jf f2 Uo(t)I 2df (2.40)
Et 0

where

Et = J 1uo(t)I 2dt (2.41)

and U (t) is defined by (2.2).

This definition of the mean-square properties L, B, T, and W is

not unique; Kennedy (1969) defines these properties using Lerner's (1959)

definition of the duration of a signal. The definitions given above are

given only for completeness. For strictly time- or band-limited scattering

functions and/or bandpass signals, simpler definitions will be used for0
L, B, T, and W.

An underspread channel is defined to be one for which [Van Trees,

1971]

BL < 1; (2.42)

similarly, an overspread channel is defined to be one for which

[Van Trees, 1971]

BL > 1 (2.43)
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In reviewing the literature on doubly-spread channels, the terms

12 correlation (or coherence) time and correlation (or coherence) bandwidth

are often encountered in characterizing the channel [Kennedy, 1969]. The

correlation time of a fading channel is defined to be the time separa-

I tion T beyond which samples of the received complex envelope arec

independent. Since the channel scattering process is assumed to be

modeled as a zero-mean complex Gaussian process, given the transmitted

- signal, the received signal envelope is also a zero-mean complex

Gaussian process. Thus independence of time samples is implied if the

correlation function of the envelope is zero. Using (2.32) and (2.14),

the correlation between time samples of the received signal envelope is

RT(tl,t 2 ) = Eu(tl)u (t 2 )] J pT(T,tl-t 2 )u0(tl-T)u(t 2 -T)dT. (2.44)

By convention, we choose the correlation time for the channel to be the

smallest time separation Tc = t -t 2 for which

R TE(t, t2 ) = 0. (2.45)

In a similar fashion, the correlation bandwidth of a fading channel

is defined to be the frequency separation W beyond which samples of thec

Fourier transform of the received complex envelope are independent.

From the comments above, the received signal envelope is a complex

Gaussian process and it therefore follows that the Fourier transform of

the received envelope is also a complex Gaussian process. Thus

independence of frequency samples is implied if the correlation function

of the Fourier transform of the received envelope is zero. From (2.14),

the Fourier transform of the received envelope is
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U(f) = 7 ( T ' t)u 0 (t- T ) exp(-j2 Tft)dTdt. (2.46)

Using (2.32), the correlation between frequency samples of the Fourier

transform of the received signal envelope is given by

RFE(fl,f 2 ) _ EU(fl)U*(f 2 )

ZIP fp (Tr, t 1 -t 2 )u 0 (tl-T)u0(t 2 -T)exp[j2TT(f 2 t 2 -f t ) ]dTdt 1 dt 2  T7

(2.47)

By convention, we choose the correlation bandwidth for the channel to be

the smallest frequency separation Wc  f f-f2 for which

RFE(fl,f 2) 0 . (2.48)

In Sections 2.5 and 2.6 simpler expressions are derived for the

correlation functions of the received envelope for time separations and

frequency separations, respectively.

Finally, we note that in the above, the doubly-spread channel

was characterized in terms of its channel covariance function and the

• temporal Fourier transform of this quantity, the channel scattering

function. Alternatively, we could have characterized the channel by the

*- spatial Fourier transforms of these two quantities:

RDR(V,t) PJ' p(T,t)exp(-j2rrv)dT (2.49)
-Go

and

P DR ( ' ' f )  SDR(Tf)exp(-j 2 rvT)dT (2.50)

* -
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The quantity RDR(f,v) defined in (2.49) is known as the two-frequency

correlation function [Van Trees, 1971]; the quantity PDR(f,v) in (2.50)

is defined to be the Doppler cross-power spectral density [Bello, 1963].

The usefulness of having the four quantities p(T,t), SDR(T,f), RDR(vt),

and PDR(v,f) comes in characterizing doubly-spread channels which have

correlation functions which are concentrated in one or more of the

variables time t, Doppler spread f, delay spread T, or delay frequency V.

We shall find in Section 2.6 that the two-frequency correlation function

is useful in parameterizing a subclass of doubly-spread channels.

.4 - In this section we have defined and characterized the most general

WSSUS fading channel, the doubly-spread channel. Often fading radio

channels exhibit spreading predominately in either the time or frequency

r domains only. In still other cases, the fading effects are such that

they may be modeled by a random variable instead of a random process. In

such cases, it is convenient to define subclasses of doubly-spread channels

having specific characteristics. In the next three sections we will

develop the models for three subclasses of doubly-spread fading channels,

also known as degenerate channels [Van Trees, 1971].

* 2.5. Time-Selective Fading Channels

In Section 2.2, we developed the general model of a fading channel by

assuming that the scattering medium could be modeled as a randomly moving,

layered volume of scatterers; each layer of which could be modeled as a

complex Gaussian process. In this section we will assume that the

scattering medium can be modeled as a single layer of randomly moving

* ' scatterers. As will be seen, such an assumption leads to the development

of a class of channels known as time-selective fading channels.
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To begin with, assume that a signal so(t) given by (2.1) is

transmitted through a scattering medium that can be modeled as a single

layer. The received signal is

s(t) = Re([(t-t0)uo(t-t0)exp(j2TTfo(t-t0 ))] (2.51)

where to is the propagation time between the transmitter and receiver and P(t)

is the time-varying transmission coefficient due to the scattering medium.

From the comments in Section 2.1, we will assume P(t) is a sample function

from a zero-mean complex Gaussian random process. Equation (2.51) may

also be written as

S(t) = Re[u(t-t0)exp(j217f 0 (t-tO)) (2.52)

where

u(t) = 0(tc)U(t). (2.53)

For the WSSUS channel model, P(t) is a stationary random process.

It is important to note that since P(t) is a complex-valued process it

influences both the amplitude and the phase of the transmitted signal s0(t).

Equations (2.51) or (2.52) and (2.53) together with the condition

that P(t) be a stationary process constitute what is known as the time-

selective fadir. channel model [Bello and Nelin, 1963]. Other adjectives

often used to describe this channel model include channels dispersive only

4in frequency [Kennedy, 1969], frequency-flat fading channels [Bello and

Nelin, 1963], or Doppler-spread channels [Van Trees, 1971]. The basis of

this terminology will become clear as the properties of time-selective

fading channels are discussed.
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Equation (2.51) could just as easily have been derived directly from

the doubly-spread fading channel model by noting that (2.51) is identical

in form to (2.11), except for the argument of P. Hence the general

fading channel model (2.12) reduces to (2.11) where the range variable

U. T of 0 is no longer important. In terms of covariance functions of the

channel, the channel covariance function for the time-selective fading

channel is

p(T,t-s) = P(O,t-s)6 (T). (2.54)

In the following, we will use (2.54) for the channel correlation function

for time-selectivP fading channels rather than define a new time auto-

correlation function that directly characterizes P(t) in (2.51).

Some comments on the form of (2.53) are in order. First, since uo(t) ,

I the transmitted envelope, is being multiplied by P(t), which is independent

of frequency, the received envelope u(t) in (2.53) is easily seen to

undergo fading that is independent of frequency; i.e., the various

Sfrequency components of u0 (t) fade identically (frequency-flat fading).

Nevertheless, P(t) in (2.53) is a time-varying function and as such,

acts to modulate the transmitted envelope u0 (t). This leads to preading

of the Fourier transform of the transmitted envelope in the frequency-

domain; hence, the origin of the term Doppler-spread fading. Finally,

since P(t) in (2.53) is independent of T, the uncorrelated scattering

condition of WSSUS channels is not really necessary in characterizing

time-selective fading channels.
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Using (2.54) in (2.33), the scattering function for a time-selective

fading channel is

SDR(Tf) = SD(0,f)(T) = ( (T) e p(0,t)dt. (2.55)

The term SD(O,f) in (2.55) is known as the Doppler scattering function

of the channel.

From (2.55) and (2.36), we see that the mean Doppler shift for a

time-selective fading channel is

= - J' fSD(0,f)df; (2.56)

20 _

similarly, from (2.55) and (2.37) we see that the mean-square Doppler spread is

1 2 2
B - f2SD(0,f)df - mD  (2.57)

where

2 r
2a b SD(O,f)df. (2.58)

The mean-square Doppler spread characterizes the Doppler spread around the

mean Doppler shift due to the time-selective properties of the fading

channel.

Using (2.55) in (2.34) and (2.35), it is readily seen that the mean

delay and mean-square delay spread for a time-selective fading channel

are identically zero:

4 0-5
R -- L -- 0. (2.59)
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Thus the time-selective fading channel exhibits spreading in frequencyr
-" but not in delay and is therefore often called a singly-spread channel.

* "Another singly-spread channel will be encountered in the next section.

To clarify the relationship between correlation time, the channel

correlation function, and the correlation between time samples of the

received signal envelope for a time-selective fading channel, consider the

following example. Note first that by using (2.54) in (2.44), the

correlation between time samples of the received signal envelope for a

time-selective fading channel is

RTD(tlt2) = p(O,t -t 2 )u0 (t)u*(t 2) . (2.60)

For this example, let the Doppler scattering function for the channel be

of the form t1; .B< <B
- _2 2

SD(O'f) (2.61)

10; elsewhere 2

The corresponding channel correlation function p(0,At) is therefore

sinrrBAt
P(0,'At) - B TTBAt

The correlation time as defined by (2.45) is given by

TC B' (2.62)

provided

Uo(tl)Ut(t l - At )  0 for 0 < At < (2.63)
u0(u(t-t B (.3

Thus time samples of the received signal separated by 1/B seconds will

be uncorrelated.
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Suppose, however, that we transmit a pulse of duration T through

the channel where

1
T << (2.64)

In this case, it is the pulse itself that determines T and thec

correlation time is equal to the duration of the pulse. From (2.60)

and this example, we may conclude that, provided (2.64) holds, time

samples of the received envelope separated by less than the pulse

duration T will be correlated. In Section 2.7 we will see that (2.64)

is a necessary condition for the development of the non-dispersive fading

channel model.

2.6. Frequency-Selective Fading Channels

The second subclass of doubly-spread fading channels that we will

look at are known as frequency-selective fading channels [Bello and Nelin,

1963]. As is the case for time-selective fading channels, frequency-

selective fading channels result from doubly-spread channels by making

different assumptions about characteristics of the scattering medium. For

frequency-selective fading channels, we assume that the scattering medium

may be modeled as a fixed (non-moving) volume consisting of differential

layers. For a transmitted signal s0 (t) given by (2.1), the received

signal scattered from a single layer is
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s(t,T) = Re[P(T)u 0 (t-t 0 -T )exp(j2Tf 0 (t-t 0 -T ))dT (2.65)

where t0 is the nominal propagation delay between the transmitter and

g receiver, T is the additional delay due to the scattering layer and P(T)

is the transmission coefficient for a wave scattering off a layer whose

propagation delay is T. Note in particular that P(r) is a random variable

that is indexed by the additional delay T. We will assume O(T) is a

zero-mean complex random variable.

The total received signal is a superposition of all the responses due

to the individual layers:

s(t) = Re [ _()u 0 (t-t0 -)exp(j2Tf 0 (t-t0 -T))d&] , (2.66)

a where P(T) is assumed to be zero except for the finite region where

scatters exist. Since P(T) is a zero-mean complex Gaussian random

variable with a Rayleigh distributed amplitude and a uniformly distributed

phase, the factor exp(-j2Trf0T) may be absorbed into P(T). In this case

(2.66) becomes

s(t) - Re[f.(T)u 0 (t-t 0 - T)exp(j2nf 0 (t-t 0 ))d; , (2.67)

L-.

or equivalently

s(t) - Re[u(t-t 0 )exp(j2Trf 0 (t-t 0 ))] (2.68)

where

u(t) = f O(T)u 0 (t-T)dT = J 8(t-T)U0 (T)dT (2.69)

-°
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Equations (2.67) or (2.68) and (2.69) together with the condition that the

individual scattering layers are uncorrelated constitute the frequency-

* selective fading channel model. Observe that we could have derived (2.67)

directly from (2.12) by simply dropping the time dependence of P(T,t).

Thus frequency selective fading channels are properly designated a subclass

of doubly-spread channels. Note that (2.69) describes the input-output

characteristics for a linear time-invariant filter with complex impulse

response P(t). For reasons that will become apparent, frequency-selective

fading channels are also known as time-flat fading channels [Bello and

Nelin, 19631, channels dispersive only in time [Kennedy, 1969], and range

or delay-spread fading channels (Van Trees,1971].

The channel covariance function for a frequency-selective fading

channel is

g (r) _P (Tr,O) (2.70)

The term g(T) is also known as the range scattering function for a

frequency-selective fading channel.

The channel scattering function for a frequency-selective fading

channel may be found by using (2.70) in (2.33):

S (T,f) = g(T)8(f) (2.71)
DR

Using (2.71), the mean delay for a frequency-selective fading channel is

1 -- Tg(T)dT (2.72)- 2R = -

whb

while the mean-square delay spread is given by
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L T'gT1d 2 (2.73)2 MR

2a b-TgTd 
-

where

2aI = 2 g(T)dT. (2.74)

Using (2.71) in (2.36) and (2.37), the mean Doppler shift and the

mean-square Doppler spread for a frequency-selective fading channel are

- found to be identically zero.

We will now demonstrate, by way of example, the relationship between the

two-frequency correlation function, the transmitted signal envelope, and the

* "correlation between frequency samples of the received signal envelope. To

do this we first need to compute the correlation between frequency samples

of the Fourier transform of the received signal envelope when a bandlimited

signal is transmitted. Using (2.70) in (2.47), the frequency correlation

function RFE(fl,f2 ) becomes

RFE(fl,f2) = fg(T)u 0 (t1 -T)u0(t2-T)exp(j2 rr (f2 t2-f1tI))drdt 1dt2 . (2.75)

Equation (2.75) may be rewritten as

RFE(fl'f2) = U 0 (f1 )U0 (f2 ) g(T)exp[-j2TTT(f 1-f2)]dT (2.76)

where U 0 (f) is the Fourier transform of u0 (t) as defined in (2.2). Note

that the quantity

Ca

PR(f,O) A g(T)exp(-j2 TTf)dT (2.77)

appearing in (2.76) is the two-frequency correlation function RDR(f,t)

for zero time separation as defined by (2.49). Using (2.77), (2.76) may

be written as
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EU(flf U(f )U( fl-f 2 ,0). (2.78)

Now let g(T) be of the form

g(T) = (2.79)

0, elsewhere •

Using (2.77), the two-frequency correlation function for the channel

covariance function given by (2.79) is

RR(flf 2 ,0) = L sinT L(fl f2) (2.80)
RR~flf2 T L(f - f)

Assume a signal is transmitted whose envelope function has a Fourier

transform given by

1, W< f <W2 -2
U0 (f) = (2.81)

0, elsewhere

Using (2.80) and (2.81) in (2.78), it is readily seen that if

W >- (2.82)L

then the frequency components of U0 (f) separated by multiples of lI/L Hz

will be uncorrelated. From (2.48), we see that the correlation bandwidth

of the channel for this case is

w (2.83)
c L
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If, however, instead of condition (2.82) we have the condition

W 1 (2.84)
L'

then using (2.80) and (2.81) in (2.78), we see that samples of the

Fourier transform of the envelope of the received signal are correlated

for all frequencies in the bandwidth of the signal. In Section 2.7 we

will see that (2.84) is a necessary condition for the development of the

non-dispersive fading channel model.

- "Before leaving this section, we make mention of a concept often

encountered in the literature on fading channels, which is that of

time-frequency duality ([Bello, 1964], [Van Trees, Sec. 12.3, 1971]).

ir The reader may have noticed a certain similarity between the equations

characterizing a time-selective fading channel and the equations

characterizing a frequency-selective fading channel. As an example

r" of this, compare the expressions for the correlation between time

samples of the received signal envelope for a time-selective fading

channel given by (2.60) and the correlation between frequency samples

of the Fourier transform of the received signal envelope for a

frequency-selective fading channel given by (2.78). Except for the fact

that time appears in the arguments of (2.60) while frequency appears in

the arguments of (2.78) and that Fourier transforms of the terms of (2.60)

0.

0*
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are used in (2.78), the two expressions are identical in form. To

emphasize this "duality" concept, (2.69) may be written as

U(f) = H(f)U0 (f) (2.85)

where H(f) is the Fourier transform of a sample function of P(T):

H(f) = 1 (T )exp(-j2TTfT )dT (2.86)

Comparing (2.53) with (2.85), we see that except for the fact that

Fourier transforms are used in (2.85), the defining equations for the

two channel models are identical in form. As was mentioned in Section

2.3, even the conditions of wide-sense stationarity for the time-selective

fading channel model and uncorrelated scattering for the frequency-

selective fading channel model are dual concepts. Bello (1969) has

thoroughly discussed the various concepts associated with time-

frequency duality; the reader is urged to consult [Bello, 1969] for more

details. Using Bello's definitions, Van Trees (1971) proves that a

time-selective fading channel is the dual of a frequency-selective

fading channel. The principal advantages of recognizing this duality

appear to be in deriving equivalent circuit models of fading channels -

[Bello, 1963], designing optimal receivers for the two types of

channels [Van Trees, 1971], and in evaluating the performance of

communication systems over time-selective and frequency-selective

fading channels ([Bello and Nelin, 1962], [Bello and Nelin, 1963]).
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2.7. Nondispersive Fading Channels

In the previous two sections, we have discussed two subclasses of

the doubly-spread fading channel model. To derive the channel models

for these subclasses we have assumed either that the scattering medium
r

is moving but may be modeled as a single layer or that the scattering

medium is fixed but consists of differential layers. In this section

- we assume that the scattering medium is both fixed (non-moving) and may

be modeled as a single layer.

For a transmitted narrowband bandpass signal given by (2.1), the

received signal, after passing through a fixed, single layer scattering

medium, is given by

s(t) = Re[Pu 0 (t-to)exp(j2rrfo(t-tO))M (2.87)00

where tO is the propagation time between the transmitter and receiver

and P is assumed to be a zero-mean complex Gaussian random variable.

Equation (2.87) constitutes the fading channel model for a nondispersive

fading channel [Kennedy, 1969]. Note that (2.87) could have been derived

directly from the channel model for a doubly-spread fading channel (2.12)

by dropping the time dependency of P(T,t) and by noting that scattering

is due to a single layer. A more precise derivation of the nondispersive

fading channel model from the doubly-spread fading channel model is given

-4 below.
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The channel covariance function for a nondispersive fading channel

is given by

P(TAt) = p(0,0)6(),- < < T , - < At < =. (2.88)

Using (2.88) in (2.33), the scattering function for the nondispersive

fading channel is given by

(Tf) = p(0,0)6(T)6 (f). (2.89)

From (2.89) and (2.34)-(2.37), the mean delay, mean-square delay spread,

mean Doppler shift, and mean-square Doppler shift for a nondispersive

fading channel are all identically zero. The nondispersive fading

channel thus exhibits no spreading in frequency or time; hence the name

nondispersive. Another term often used to describe the nondispersive

fading channel is flat-flat fading channel [Bello and Nelin, 1963].

Since P in (2.87) has a Rayleigh distributed amplitude and a uniformly

distributed phase, the nondispersive fading channel is also known as

simply a Rayleigh fading channel. In this study, however, by a

Rayleigh fading channel we will mean any doubly-spread fading channel

or any of its subclasses which do not contain specular components. -

As mentioned above, a nondispersive fading channel is a special

case of a doubly-spread channel. More generally, it is a special

case of both time-selective fading and frequency-selective fading

channels (which are, in turn, special cases of the doubly-spread

channel). In Section 2.5 we saw that, for a time-selective fading

channel and a signal satisfying (2.64), time samples of the received

envelope would be correlated for the duration of the transmitted envelope.
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In Section 2.6 we saw that, for a frequency-selective fading channel and

a signal satisfying (2.84), frequency samples of the received envelope

would be correlated for all frequencies in the bandwidth of the trans-

mitted signal. Since a nondispersive fading channel exhibits no spreading

in either time or frequency, (2.64) and (2.84) combined must be the

condition for a doubly-spread channel to exhibit nondispersive fading:

BL << (2.90)
WT

Since the time-bandwidth product for any signal must be greater than

unity (c.f. [Papoulis, Sec. 4-4, 4-5, 1962])

TW > 1, (2.91)

(2.91) combined with (2.90) indicates that nondispersive fading will

3 occur provided

BL << 1. (2.92)

From (2.42), it is seen that nondispersive fading will occur in a doubly-

spread channel provided that the channel is underspread.

Finally we mention a special case of the nondispersive fading

channel known either as the "slow and flat" fading channel model

(Nesenbergs, 19671 or the pure fading channel model [Wozencraft and Jacobs,

1965]. For this case, 0 appearing in (2.87) is assumed to be a real

Rayleigh (or Rician, if a specular component is present) distributed

random variable. This channel model will result from the nondispersive

fading channel model if the phase of 8 may be modeled as a real,

nonrandom variable.

Figure 3 sunmmarizes the fading channel models that we have

considered up to this point.
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CHAPTER 3

AVERAGE SNR ANALYSIS OF DS/SSMA COMMUNICATIONS VIA FADING CHANNELS

One useful measure of performance of a DS/SSMA system is the average

signal-to-noise ratio SNR. In this chapter, we analyze the average

F signal-to-noise ratio performance of DS/SSMA communications for a general

class of fading channels. In making this analysis we shall use the DS/SSMA

model from Chapter I together with the WSSUS fading channel model of

Chapter 2. The results presented represent a generalization of the

performance analysis of [Pursley, 1977] which considered only additive

white Gaussian noise (AWGN) channels.

The type of fading considered in this chapter is Rician or specular-

plus-Rayleigh fading [Stein, p. 372, 1966]. That is, for a single trans-

*mitted signal given by (2.1), the received signal (2.18) consists of a

replica of the transmitted signal plus a weaker Rayleigh-faded version of

this signal. This will be the situation whenever the transmission medium

is such that there is a strong stable path and a number of weak paths. The

component of the received signal that is produced by the strong stable path

is called the specular component or the desired signal component; this

component can be coherently demodulated. However, unless restrictions

are imposed on the fading rate, the Rayleigh-fading signal that arises

from the weak paths cannot in general be coherently demodulated [Stein,

4pp. 406-407, 1966], and hence we shall treat it as interference. An

4

4
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example of a situation in which this type of fading occurs is the example

given in Section 2.1 of communication between an aircraft and a satellite.

In this example there exists a direct communication path between the

aircraft and the satellite in addition to one or more conmmnication paths

due to reflection off the earth.

If the channel exhibits Rayleigh fading rather than Rician fading

(i.e., if there is no strong stable component in the received signal),

then the direct-sequence form of spread-spectrum communication would not

generally be suitable, since it could not be coherently demodulated unless

the fading is sufficiently slow. This follows from the results of Viterbi

(1965) who showed that for a correlation receiver with a phase reference

having a uniform probability density function, as would be the case for

a nondispersive Rayleigh-fading channel, the probability of error for an

antipodal signaling set is . For this chapter, it is assumed that the

specular component is of sufficient amplitude that the effects of fading

on the performance of the DS/SSMA synchronization subsystem may be

neglected. The performance of synchronization subsystems in the presence

of fading communication channels has been analyzed elsewhere (e.g., see

[Weber, 1976]).

3.1. DS/SSMA System Performance for Doubly-Spread Fading Channels

In this section, we shall develop the results for the average

signal-to-noise ratio at the output of a correlation receiver for

DS/SSMA communications via a doubly-spread channel. In Sections 3.2

and 3.3 we will specialize the results obtained to the singly-spread

time-selective and frequency-selective channels, respectively.
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The system model that we will consider is shown in Fig. 4 for K

users. The system model as shown is assumed to be time-asynchronous,

i.e. there exists no common timing reference among each of the K-users.

In Fig. 4, the fading channel is assumed to be able to be modeled by a

linear time-varying filter whose transfer function is, in general,

nondeterministic. With this one exception, the system model of Fig. 4 is

identical to the system model of Fig. 1 for the AWGN channel.

For each k (1 -- k - K) the k-th user's data signal bk(t) is a

sequence of statistically independent, unit amplitude, positive and

negative, rectangular pulses of duration T. The data signal for the k-th

user is therefore given by (1.1). As was the case for the AWGN channel

model, each user is assigned a code waveform ak(t) which consists of a

periodic sequence of unit amplitude, positive and negative, rectangular

pulses of duration T . The code waveform for the k-th user is therefore

" "given by (1.2). We assume that each signature sequence has period

N T/Tc so that there is one code period per data symbol.

The data signal bk(t) is modulated onto the phase-coded carrier ck(t),

which is given in complex envelope form by

c (k(t) =1 Reak (t)exp(jw t + jek)], (3.1)

so that the transmitted signal for the k-th user is

- k(t) = 12P Re[ak(t)bk(t)exp(jwct + jek)]. (3.2)

In the above expressions, P is the common signal power, ek is the phase

of the k-th carrier, and w is the common carrier frequency.
- - c

4!
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. In the absence of fading, the received signal at the input to a

receiver is given by

K
r(t) ; n(t) + Z sk(t-Tk), (3.3)

k=l

where n(t) is the AWGN term and T k accounts for the nominal propagation

time for the k-th signal as well as for the time asynchronism between the

k-th transmitter and the other K-1 transmitters in the system.

In the presence of fading, however, the expression for the received

signal at the input to a receiver becomes more complex. From Chapter 2,

-- for a transmitted signal given by (2.1), the received signal at the output

of a doubly-spread fading channel is given by (2.12) or (2.13) and (2.14).

As noted in the introduction to this chapter, the type of fading being

* considered is specular-plus-Rayleigh fading. Thus (2.18) must be used to

describe the fading process. Finally, in addition to the fading present

in the channel, we will also assume that additive white Gaussian noise is

also present. Thus if xk(t)coS(Wct+8k) is the input to the channel from

the k-th transmitter, then the corresponding output yk(t) is given by

yk(t) - Retuk(t-Tk)exp[jwc(t-Tk) + jek]} + n(t), (3.4)

where n(t) is the AWGN term and

A

uk(t) - Yk Ica Ok(Tt)Xk(t- T )dT + X k(t). (3.5)

The first term of (3.5) is the faded portion of the received signal and

the second term is the specular component. The non-negative real

parameter Yk is the transmission coefficient for the fading channel as

4
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seen by the k-th signal; and 0 k(T,t) is a zero mean unit-energy (i.e.,

2
0b = in (2.38)) complex Gaussian random process which will be referred

to as the fading process. As pointed out in Section 2.2, k(T,t), as it

appears in (3.5), represents the equivalent low-pass time-varying impulse

response for the faded portion of the fading channel. The covariance

function for the fading process in a doubly-spread channel is given by

(2.32):

Ak(TT; t, S )  = 2- (P (T , t) CFS

= Pk(T,t-s)6 (T -a). (3.6)

52

As will be seen below (see (3.21)), for practical WSSUS channels, pk(T,t-s)

is a real-valued function.

From equations (3.2)-(3.4), it follows that for a Rician doubly-spread

fading channel with AWGN, xk(t) -- 2 ak(t)bk(t), so that the received

signal at the input to a receiver is

K
r(t) = n(t) + E Re[uk(t - Tk)exp(j[wct + cPk]}] (3.7)

k=l

A
where Cpk e - W T k If the received signal r(t) is the input to a

correlation receiver matched to s.(t), the corresponding output is
3.

T
Zi = 0 r(t)Retai(t - Ti)exp(jw ct + jcpi)ldt. (3.8)

0

Since we are interested in phase angles modulo 2n and time delays modulo T,

we shall (without loss of generality) assume T. - 0 and 0. = 0 (and

hence pi = 0). Therefore, as in [Pursley, 1977], the phase angles "k

and 8k and the time delay Tk (for k # i) are all measured relative to

the phase and time delay of the i-th signal. From (3.7) and (3.8), it

t



59

follows that, except for double-frequency terms,

T K T jCPk
Zi. S n(t)ai(t)cos w t dt + Z Re k (t - Tk)ai(t)e 3dt, (3.9)0 k=l 0

where we have used the identity (2.10). The double frequency terms which

are omitted from (3.9) may be ignored for practical implementations of

SSMA.

- As in [Pursley, 1977], the phase angles, time delays, and data

symbols for the k-th signal (k # i) are modeled as mutually independent

random variables which are uniformly distributed on [0,2r], [0,T], and

[+l,-11, respectively. The average signal-to-noise ratio SNR. at the

output of the i-th correlation receiver is then defined in terms of

probabilistic averages (i.e., expected values) conditioned upon

bi (t) for 0 5 t < T, where, without loss of generality, we may assume

: b. (t) = +1 over this interval.

For convenience, the following notation will be introduced. Let

h k,i(;t) = ak(t - T)bk(t - T)ai(t) (3.10)

and

f k,n,i(TC;t,s) = hk,i(T;t)h n,i(;s) (3.11)

for 1:5 k- K, :n5K, i<i--K; 0 <- t:-T, 05 s < T; and -- <r- ,

- < < -. The function hi., is denoted by hi., and f is denoted by

f i In terms of this notation, the i-th specular component, the i-th

(complex) faded signal component, the AWGN component, and the complex

interference component are defined by
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T
D. ff i j' bi(t)dt (3.12)

0

TOF. P (T ii t)hi(r t) dTdt (3.13) :

3. 0 -

T

N %T n(t)ai (t)cos w t dt (3.14)
0

K

k=l k,i + (3.15)

k~i

where
T

ki -k 0 (t T k)hk i(T k + T;t)exp(Jcpk)dTdt (3.16)
0 -

T

h k, hk(T; t) exp (J(Pk)dt (3.17)

0

If we then let F. ReFi) and I. = Reti.) we see from (3.9) that

Z. = N. + D. + F. + I. (3.18)

T
Since EN. f El i = EFi = 0 and ED. = Vk I b i (t)dt = TP, then

3 3 30
EZi = T . Ass.aming that n(t) has a two-sided spectral density N0,

the variance of the noise component Z. is

Var Ni = kNoT, (3.19)

while the conditional variance of the i-th specular signal component,

conditioned upon bi(t) = +1 for 0 : t < T, is zero. Since the fading

process has zero mean, the variance of the faded portion of )he i-th

signal is given by
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2i ]2 2 *

Var F. = E[Fi ] = E[Re F E[ReF.]) + E[iFiFi, (3.20)
i

which follows from an application of (2.10) with x = y = Fi. and from

the fact FiF. - IF. I is real. The expressions for the two terms in

(3.20) will involve the covariance function A. (T,a;t,s) given by (3.6) and

the function Ai (T,U;t,s) given by (2.21). In particular

EIF-1 I I I0 I Ai(T,o;t,s)fi(T,o;t,s)d~dodtds. (3.21)

0 0

The expression for E[ReCF ]] is the right-hand side of (3.21) with A.
3

replaced by Ai However as noted in Section 2.2, we will assume that

the WSSUS fading process is such that (2.23) holds so that EF 2) 0

5and thus

Var Fi - EjI I 2  (3.22)

From (3.21), (3.22), and (3.6), it can be seen that

Va F = P  2 TT"

Var Fi * Pi (T,t-s)fi (T,T;t,s)d~dtds . (3.23)
0 0

By a similar analysis of the interference component I. defined by

(3.15)-(3.17) it is clear that since the fading process has zero mean

and the data signals are uncorrelated and have zero mean, then

K
Var I Eli1j2 Z ( k Vk,i + V i' (3.24)

k=l , ~
k#i

I -
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where vk A Eli and v' EiI.1 are given by
k~ikk,i

T T
v E=Eg P f p (Tt-s)f (T + TkT + Tk;t,s)dTdtds (3.25)

k~i 0 0 k k k,k1k.

and
T T

=E :0 :0 fkki(TkTk;ts)dtds (3.26)

In general, the expression for V in (3.25) cannot be reduced further

Vk,i

without additional constraints on the covariance function p k(T,t-s) for

the fading process. The expression v' in (3.26), however, does not

depend on the fading process. Since the assumptions used to derive Vk,i

are identical to those used to derive the variance of the k-th interference

component for the AWGN channel of Chapter 1, (3.26) can be simplified as

in [Pursley, 1977] to give

2
v' - i' (3.27)

6N

where rk,i is the interference parameter given by (1.16).

The signal-to-noise ratio SNR. at the output of the i-th correlation

receiver is defined by

SNR. (EDi)[Var F. + Var I. + Var N."

T qP [Var F. + Var I + kNoT] (3.28)

Notice that for SNR. defined in this manner, the faded portion of the1

i-th signal is considered to be an interference component of Z. (the
i

* correlation receiver cannot make use of this component).
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Several observations about the results obtained up to this point will

now be made. First, throughout the analysis presented above, nowhere has

there been made any assumptions about the independence of the fading

processes k(T,t) for 1 -- k 5 K, apart from the implicit assumption that

k(T,t) is independent of the random variables bk(t), C0k, and T

Consequently, the above results are valid for the important cases where

(1) all the fading processes are independent and (2) all the fading processes

are identical, i.e., Pk(r,t) = P(T,t) for all k, 1 5 k!5 K. Case (1)

would arise, for example, in the situation where multiple mobile users

are communicating via the ionosphere, using DS/SSMA communications. For

this situation, it would be expected that each of the transmitted paths

would involve different sets of scatterers and hence, following an

argument similar to that used to develop the uncorrelated scattering

* - channel model of Chapter 2, the K fading processes would be independent.

Case (2), on the other hand, would arise if a satellite is transmitting

multiple-user data to a single aircraft using DS/SSMA communications. In

this case, all of the K users would undergo the same fading resulting in

identical fading processes. Thus the results above are general enough to

allow both of these fading situations.

Second, from the results above (viz., (3.23), (3.24), (3.25), and

(3.27)), we see that SNRi depends upon the signature sequences through the

functions fi in (3.23) and fk,k,i in (3.25) and through the interference

parameters rk,i in (3.27). In addition, SNRi depends on the channel

covariance function 1 I 15 k _ K, via (3.23) and (3.25).

t
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Finally, throughout the analysis presented above we have used a

correlation receiver structure for the receiver. This is not to imply

that a correlation receiver is the optimum receiver for DS/SSMA communica-

tions via Rician fading channels. In fact, even for DS/SSMA communications

via AWGN channels, the correlation receiver is not the optimum receiver.

For while a correlation receiver is optimum for an antipodal signalling

set and an AWGN channel (e.g. see [Viterbi, 1965.]), a rate 1 convolutional

decoder using the Viterbi algorithm is optimal for DS/SSMA communications

via an AWGN channel (Schneider, 1979]. For a nondispersive Rician fading

channel, it has been shown ([Viterbi, 1965], [Turin, 1958]) that a linear

combination of the optimal coherent and optimal noncoherent receiver is

optimum for a single user system. Other schemes have been devised to

provide low bit error rates in the presence of "slowly" fading channels

[Monsen, 1973]. Thus, it is evident that a correlation receiver is not

optimum for DS/SSMA communications via fading channels (however, in

general the optimal receiver is not known). Nonetheless, the analysis --

presented above is valuable in a practical sense, since existing

DS/spread-spectrum receivers do use simple correlation receiver structures

to simplify receiver design and construction [Cahn, 1973]. Therefore in ,"

the analysis that follows we will continue to use correlation receivers

matched to the i-th (1 5 i _ K) user's code waveform.

3.2. DS/SSMA System Performance for Time-Selective Fading Channels

Analysis. In this section, consideration is given to one subclass of

doubly-spread channels known as time-selective fading channels. The

channel covariance function for a time-selective fading channel is given

by (2.54):

4
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p (Tt-s) =p (Ot-S)6T). (3.29)

For convenience, pi(0,t-s) is denoted by ri(t-s). It follows from (3.23)

and (3.29) that the variance of the faded portion of the i-th signal is
I 2pi2T (T-sb

Var F = T Y T r (t-s)bi(t)b (s)dtds (3.30)
0 0

The expression for the data signal is given by (1.1). Making a change

of variables, u = t-s, and using (1.1), (3.30) becomes

V FT T 0 u+TP'i2 dd -O 1Var F i 
=  r ri (u )du+ r i (u )dtu

= P Y 2 ri(u)(T-u)du + ri(u)(T+u)du]

0

, In a similar fashion, the variance of the interference component

I. may be found by using (3.29) in (3.25). Interchanging the order of

f integration and expectation in (3.25), we find

= T T
vk'i 0 J0 rk(t-s)E~fk,k,i (Tk,Tk;t,s))dtds, (3.32)

where the expectation is over bk(t) and T k" Note that given Tk) bk(t-Tk)

is a semi-random binary process [Papoulis, 1965] with an autocorrelation

function for Tk' t, and s in [0,T]
'k4

(1 Tk < min(t,s)

Ebk(t-Tk )bk(S-Tk)ITk) - 1 , Tk Z max(t,s)

I0, otherwise. (3.33)
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Evaluating the expectation in (3.32) using (3.33), we find that for t and s

in [O,T]
,mf

i n (t 
s )

Ef k,k,i(T k,T k;t,s)) - ai(t)ai(s) 0 ak(t-Tk)ak(S-Tk)dTk

T
+ 5 ak(tTk) ak(STk)dTkImax ( t, s)

T+min(0,v)
ai (t)ai(s) j max(,v) ak(u)ak(u-v)du (3.34)

where u = t-Tk) v t-s and we have used the fact that ak(t) is periodic

with period T. For v positive we find

Ek ,k,i(T k k;t,s) = (t-s)ai(t)ai(s); t-s > 0, (3.35)

while for v negative we find

(T T t tsl (t)a(s); t-s > 0, (3.36)
E(fk,k,i k, kt's)) = t )ai  s

where Rk(T) is the continuous-time partial autocorrelation function

defined in Chapter 1. Combining (3.35) and (3.36), the expectation in

(3.32) reduces to

Etfki ((,Tktis)s=) (3.37)
E~f k,k,i (T k' T t 's ) ) --T Rk(It-sl)ai(~,) (3.37

Using (3.37) in (3.32) together with the change of variables u = t-s,

(3.32) reduces to

v =2 T rk(u)Rk(u)Ri(u)du. (3.38)

k~i I

4i

I6
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p From (3.24), (3.32), and (3.27), the variance of the interference

component I. is

K pT 2

" Var I.--. (Y2 j rk(U)Rk(u)Ri(u)du + P T- r (3.39)
. k=l 0 12N 3  k'i

k~i

Using (3.31) and (3.39) in (3.28), the signal-to-noise ratio at the output

of the i-th correlation receiver for a DS/SSMA system operating over a

time-selective fading channel is

2NO 
2yf T

NT
: : . SNRi 0 + - 0r i (u) (T-u)du

K 2  T1
+ -- rk(u)Rk(u)R(u)du + 3 r i ] }  (3.40)

k=1 T 0 6N3 ~

where c = PT is the energy per data bit.

Numerical Results. The general result (3.40) is now specialized to channels

having specific channel covariance functions rk (t) for 1 - k S K.

Throughout the remainder of this section it is assumed that

r (t) - 0 for Itl > XT (3.41)

k c

where X = (n+p), n is a positive integer less than N, is in the range

0 < _ < 1, and X is a positive number less than N. The quantity XT isc

called the correlation duration for the fading channel. Note that from

(2.45) and (2.60), the correlation duration for the time-selective fading



68

channel is equal to the correlation time Tr for the channel as definedC

in Section 2.4, provided we are using signals satisfying condition (2.63).

For convenience, the following notation is introduced at this point.

Let Lk(l) = Ck(Z+l) - Ck(I) and k,i(1) = C.i(). The function 1.k~i 1 ,i

will be denoted by T..

From (1.10) and (3.41), (3.40) is seen to imply

_2NO  2y. TSNR g + r i (u) (T-u~du
T 0

_2 2  (L+ TC
+ 3 E [C (Z)Ci(L) T r (u)du

k=l T 1=0 AT c k
k#i c

+ [nk,i(1) + TTik() (  )  T (u-T c)rk(u)du
iT c

iT
cc
I +8)T c (uc2r(du + 1 -

+~(-e )()i%) r ( 'i ]) (3.42)

where 8 = 1 for I < n and n = " Observe that the evaluation of (3.42)

requires only knowledge of the discrete aperiodic autocorrelation functions

of the K signature sequences as well as knowledge of the channel

covariance function rk(t). In this chapter, we shall consider two types

of channel covariance functions to illustrate the general results. These

are a triangular covariance function and an exponential covariance function.

By a triangular covariance function, we shall mean a function of the form
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" " i)A(T-vltl)' Itl X T c

r(  (t) (3.43)

I0, I t > XT

where v (XT c  T. A truncated exponential covariance function is

defined by

Be- I t it5 XT rc

-- (2){C
r( (t) =(3.44)

0, Itl > XT

It should be noted that r(2 ) (t) is not a valid autocovariance function,

but it is an approximation to the valid autocovariance r(t)= B exp(-altl),

-~< <~.Itistre ha r(2) =(2)< t < -. It is true that rk (t) = rk (-t) which is the only property

U of an autocovariance function that is needed in what follot:.

For the time-selective fading channel, the unit variance constraint

on the covariance function of the channel fading process results in the

conditions

rk (0) = AT = 1, r k (0) = B = 1. (3.45)

Using (3.43) and (3.45) in (3.42), SNR. for a DS/SSMA system over a

time-selective fading channel with a triangular covariance function

is found to be
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22

K 2 2 n 2

k 2
+ + ( + 1Tk(2)rL(3)

k=l N 4 =0 Ik i A(' Tkil ~~(Z
k#i

3 K NO
+kfl 6N3 rk,i (3.46)

k~i

where r (C) _ N-v(2+cP2 ) " In an identical fashion, it can be shown that

SNRi for a DS/SSMA system over a time-selective fading channel with

covariance function r (2) isk

22) 2.i (e-U +) )].

'- [ (1-e a)+(Xl-SNRi 2  = N [

K 2y2 n - a)+ E. k- E e'-al C k()Ci (1)(1-e

k=l N3a 1=0
k#i

+ [rrk, + i,k(")][ [(aL + 1) -e (O(A + P) + 1)1 - 1(1-e )

L2 +2 2 2 2 2
+-(~)- ] -e [( + (L+%) + -

2 .C 2 2

+ a [-(a + 1) + e (a (A + %)+11 + A (1-e

K NO

6N 3  kilK r
k i

kIi
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I-|In Fig. 5, we have plotted SNR L min(SNRi for K = 6, using

equations (3.46) and (3.47), as a function of the correlation duration of

the channel correlation function. In evaluating (3.46) and (3.47) it has been

assumed that y= y2 for all k, 1 k 6 and ) =)10 dB. The correlation
k N 0

duration used in evaluating (3.46) was that value XT satisfying the
C

(2) -5
equation r-k (XT) e (i.e., aXTC = 5). This correlation duration was

selected numerically to minimize the effect of ignoring the tail of an

exponential correlation function (see (3.41) above). Thus rk is a good

model for exponential correlation. The sequences used to evaluate (3.46)

and (3.47) consisted of 6 maximal-length shift register sequences (m-sequences)

of period 127 which collectively form a maximal-connected set [Gold and

Kopitzke, 1965]. The shift-register loading selected for each m-sequence

was the least-sidelobe energy/auto-optimal (LSE/AO) phase for that

particular m-sequence [Pursley and Roefs, 1979]. Further details on the

actual loadings used may be found in the first six entries of Fig. B.A of

[Pursley and Roefs, 1979]. In evaluating (3.46) and (3.47) we have used

only values of correlation duration satisfying X 5 ! The reason for
N

considering this limited range of correlation duration is that for A > -2

the effects of adjacent bits must be taken into account in the performance

analysis of time-selective fading channels (note that r Ik (t) and r 2 (t)

are double-sided functions (see (3.43) and (3.44)).
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Note in Fig. 5 that as the correlation duration increases, the DS/SSMA

system performance is degraded significantly. An explanation for this

(1)degradation is as follows: as the correlation duration of either r (t)

or r2) (t) increases, the time-selective fading channel model reduces to the

pnondispersive fading channel model (see (2.64)) of Section 2.7, i.e., the fading

portion of the transmitted signal is being multiplied by a complex random

variable as opposed to being multiplied by a time-varying random process. Since

the receiver structure being used is a correlation receiver, the effects of the

smoothing by the integrator in the correlation receiver on the diffuse

portion of the received signals is reduced as the channel correlation

duration increases. Heuristically speaking, if the fading process is a

zero-mean, stationary ergodic process so that time averages and probabilistic

averages (expectations) may be interchanged, then for small values of correla-

U tion duration, the diffuse portion of the received signal is averaged over the

bit duration by the receiver integrator so that its contribution to Z. is
1.

essentially zero. For larger values of correlation duration, the receiver

integrator is integrating over a time-independent random variable, so that the

contribution to Z. of the diffuse portion of the received signals becomes
2.

significant. As a result, there is a corresponding decrease in SNR.. The

fact that a DS/SSMA communication system performs better over a time-selective

fading channel with an exponential channel correlation function than one with a

triangular channel correlation function may be explained by examining (3.40).

Since for a given correlation duration, the tail of an exponential channel
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correlation function falls off faster than that of a trian...ar channel

correlation function, using (3.45) we see from (3.40) that for a given

value of XTc, the contribution to Z. of the diffuse portion of the

received signal is smaller for the exponential channel correlation

function.

Figure 6 illustrates the dependence of SNR on the cransmission

coefficient y for a time-selective fading channel with a triangular

channel correlation function. The same signature sequences as described

above are used. As might be expected from (3.46), SNR is degraded in

proportion to the intensity of the fading process. From Figs. 5 and 6,

we may ascertain that for a given minimum SNR at the output of a

correlation receiver, there exists an admissible range of y and XT for

which DS/SSMA communications is possible. Suppose, for example, we use

the LSE/AO m-sequences described above for DS/SSMA communications over a

time-selective fading channel with a triangular channel correlation
• y2

function. A desired minimum SNR of 10 dB is possible provided y < 0.2

and the correlation duration of the channel is less than 20 T

If a receiver SNR higher than that obtainable from the fading channel

for a given d/N is required, one would expect that by increasing 61N0,
0

the desired performance could be obtained. That this approach mal be

fruitless is illustrated by Fig. 7 in which SNR is shown as a function

2of 8/N for a time-selective fading channel for three values of y . In
0

Fig. 7, the correlation duration is 10 T and the set of signaturec

I
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sequences is the same as used for Fig. 1. The observed leveling-off

effect of the SNR vs. S/N curve may be expected for any communication
0

system in which the expression for Var Z. contains a sufficiently
31.

large interference component whose power is directly proportional to the

transmitted signal power (see (3.31) and (3.39)). Hence, this effect will

occur for values of K and N in the range of interest; even for SSMA

communication via an AWGN channel.

In the three figures immediately above we have chosen to use a

maximal-connected set of m-sequences with LSE/AO phases as the signature

sequences without giving any justification for this choice of signature

sequences. Some justification for this choice will now be given. First,

we have used a maximal-connected set of m-sequences bfccause such a choice

yields the largest possible set of m-sequences of period N for which any

two sequences in the set have a preferred three-valued crosscorrelation

function [Gold and Kopitzke, 19651. Hence, by using such a set we

automatically are using a set whose sequences have bounded pairwise

periodic crosscorrelation values, a desirable feature for synchronization

purposes in DS/SSMA systems and fot communication in synchronous DS/SSMA

systems. Second, we have used the LSE/AO phases for the individual

m-sequences, primarily as a sieve over the phases of the m-sequences, but

secondarily for the reason that such a choice offers promise for good per-

4formance, at least over AWGN channels (Golay, 1972]. From [Pursley and Sarwate,

1977b], we note that the interference parameter rk i is bounded by

* 4N2 . 6 (S(a(k))S(a(i))] < rk. < 4N2 + 6tS(a(k) )S(a(i))3 (3.48)

4
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where S(u) is the sidelobe energy of sequence u defined by

N-i 2
S(u) = Z C (1). (3.49)u

Hence by bounding the sidelobe energy of each of the signature sequences

through the use of LSE/AO phases, we are bounding the value of rk,i;

thereby bounding the performance of a DS/SSMA system over an AWGN

channel (see Eq. (1.19)). In fact, the choice of ISE/AO phases

is not necessarily critical for fading channels. For example, if

AO/LSE phases [Pursley and Roefs, 1979] were used, the results obtained

for Fig. 5 would differ from the results obtained using AO/LSE phases

by less than 0.004 dB. In Section 3.5 we will see that maximal-

connected sets of m-sequences with LSE/AO phases perform very much like

"typical" sequences. Thus it is expected that the numerical results

presented above in Figs. 5-7 are typical results that would be obtained

using any reasonable set of 6 signature sequences of length 127. However

as will be shown later, bad choices of signature sequences will give far

worse performance.

3.3. DS/SSMA System Performance for Frequency-Selective Fading Channels

Analysis. The dual of the time-selective fading channel is another

special case of a WSSUS channel known as a frequency-selective fading

channel. In this section the effect of frequency-selective fading on the

*_ performance of DS/SSMA systems is considered.

The channel correlation function for a frequency-selective fading

channel is defined (as in (2.70)) by

g.(T) pi(T,0). (3.50)

I"
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An additional assumption about the selectivity of the channel is necessary

in order to obtain useful results regarding the performance of DS/SSMA

, systems over frequency-selective fading channels. As can be seen from

the equations that follow, a frequency-selective fading channel exhibits

memory and therefore introduces inters.mbol interference into the received

_ •signal. We will assume in this section that the selectivity of the channel

is such that, in the detection of a given data symbol, we need only be

* concerned with the intersymbol interference due to the two adjacent data

symbols. This condition is equivalent to assuming that

" gi(T) 0 for ITI > T. (3.51)

Channels exhibiting higher degrees of selectivity will require the inclusion

of the effects of more than the two adjacent bits in the analysis of the

performance of the system, in which case the analysis that follows can be

modified in a straightforward manner. However, as noted in [Bello and

* rNelin, 1963], the need to include more than two adjacent bits in the

system analysis is frequently an indication that the channel is too

frequency-selective for use in practical communication systems.

Using (3.50) and (3.51) in (3.23), we find that the variance of the

faded portion of the i-th signal for a frequency-selective fading channel

is

2 T T T
Va- F T gi(T) 0 0 fi(T,T;t,s)dtdsdT. (3.52)-T- 0 0

Notice from (3.11) that the double integral with respect to t and s in

4(3.52) reduces to the product of two single integrals, each of which is

given by
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i, 0 i (T+bi,- (TiT.

T
h h.C;t)dt =(3.53)

0

tbi Ri(-) +b i R (-T), T< 0

where R.(Tr) is the continuous-time partial autocorrelation function

defined in Chapter 1. Upon substitution of (3.53) into (3.52), we

obtain

2T
Var F. ply. 2 g(T)[2 (T )+(b. b '_+b 'b R(T)R (T)+R 2 T)ldT. (3.54)

Averaging (3.54) over all data patterns, it is easy to see that the

variance of the faded portion of the i-th signal is

2 T .2 2
Var F. P'y f g. (T) [R.(T) + R .(T) ]dT. (3.55)

0

The variance of the interference component I. may be evaluated for

a frequency-selective fading channel by using (3.50) and (3.51) in (3.25)

to obtain

vk g g('r)a (t)a (S) (tSTdts (3.56)
k~i 0 0-_Tk

where
iT

~(t, S,T) akt- -Ta~- TEbtT-~ - )d (3.57)

Letting u =t-T and v =S-Tr in (3.57), we note from (3.33) that

ai (t)a~ (S)X(t,s,T) =E~f k.C4/rkT+T t) ) (3.58)
k'4 k
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and hence using (3.37), (3.57) reduces to

X(t,S,T) 1 Rk(lt-sl). (3.59)

Using (3.59), (3.56) may now be rewritten as

iTT T
Vk (I gQ) dTr a. (Oa. (s, (tsJdts (3.60)

-T 0 01 1 RI sdds

After a change of variables Tr = t-S, (3.60) reduces to

T T
v = ( ~ T)dT 0 R (T)Rk(T)dTk,i T 0 g

= T gk (T)dT 0 [R ,(T) + j (T d

2T 3T
c 3T rk~ I gk (T)dT (3.61)

where the second step follows from [Pursley and Sarwate, Section V, 1977a]

and the last step follows from [Pursley, eqs. (1l)-(12), 1977]. From

(3.24), (3.61), and (3.27), the variance of the interference component

I. is

K 2T 3T T2
Van I PZr [y-5 3T gk( + 3 1.(3.62)

k-1 ' 0 12N
k~i

Using (3.55) and (3.62) in (3.28), the signal-to-noise ratio at the

output of the i-th correlation receiver for a DS/SSMA system operating

over a frequency-selective fading channel is

A-
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L•

No 2 Z i'[ ')+R()d

K 2 T+ r  2 C g. +  T (3.63)SNR. .(TT)[R.( () -i- _r.)d

T k=l 0 1,3

ki

Numerical Results. In this subsection (3.63) is specialized to the case

of a specific channel covariance function gk(T). In all that follows it

is assumed that gk(T) satisfies (3.41); that is gk(T) is non-zero only

over the interval JIT -- XT . Analogous to the time-selective fading
c

channel case, -e define XT to be the correlation duration of the frequency-

selective fading channel. From (2.77) and (2.78) we see that, provided

(2.82) is satisfied, the first zero-crossing of the Fourier transform of

gk(T) is defined to be the correlation bandwidth of the frequency-selective

fading channel. In practice, however, the correlation bandwidth of the

channel is usually defined in this manner without taking into account the

bandwidth of the transmitted signal ([Monsen, 1971], [Bello and Nelin,

1963]). Thus from the theory of Fourier transforms, if a frequency-

selectiv. fading channel has a correlation duration XTc, the correlation

-1
bandwidth of the channel is proportional to (XT c) (see [Monsen, 1971]).

Consequently, the correlation duration of the channel is also a measure

of the correlation bandwidth of the channel.

ai Using (1.9), (1.10), and (3.41) in (3.63), we find that for a .

frequency-selective fading channel with a specified channel covariance

function which satisfies (3.41), SNR. is2.

4
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2

No 2*y n 2i ((1+0 TTcSNR+ [(N + [() -N) + C l T (T)dT
2d T 2 '=0 AT

CC

-,' .i. ( C ) C 2 .i

' ' C2 2+ - 2+[ ( (-N) + A.(I)] fTI 9 C ( LJ
C. .

K 2 y T
+ Erk gk(T)dr +  ] (3.64)

- 3N 0 6N
k#i

For the frequency-selective fading channel the unit-energy constraint

on the fading process covariance function implies [Van Trees, Section

12.1, 1971]

SS gk (T)dr 1 . (3.65)

Noting that gk(T) gk( -T) and using (3.65) in conjunction with (3.41)

in (3.64), we see that the last term of (3.64) reduces to

I!K 2 TK

K rk [2k T gk(T)dT + i (1+2)r (3.66)

k=l ' 3N 0 6N3  6N k-1
k#i k~i

Triangular and truncated exponential covariance functions for a

frequency-selective fading channel are defined in a manner analogous to

tne definition of the corresponding channel covariance functions for a

time-selective fading channel (i.e., gk is defined as in (3.43) and (3.44)).

For this channel model however, (3.65) implies that the normalization

factors A and B appearing in (3.43) and (3.44) are given implicitly by

. t .'
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[1 e ak (3.67)

where X is defined in (3.41). For a frequency-selective fading channel

with a triangular channel covariance function, SNR.i is found to be

2y

SNR~1  (C (y n %c -N)+

2 (TT .4N)+ TT .))I'Ad) + !-I (2 (A-)+A2co) 2
+ i Li1 3 i 1

K N)
+ 122) + ( . (3.68)

6N 3k=l k i
ki

The corresponding result for a frequency-selective fading channel with

a truncated-exponential channel covariance function is

2

(NR2 ) 0 N Y~i n -011 2 2
1N 2 e [(C.(IL-N) + C.(1)) (1-e )

N 11-e I 1=0

+ 2 (rr.(I-N) + TT))-ci~ -e a1+ 11-tle

2 2 ,))[2 +21 2 2 (LtL) 2
* + (A.L )+.)([ + + -e [ +) + +- I

UY 2 11

+ [e (0(4+0)+l) -a(,L+l)] + I (l-e M)

+ 122 Ir(3.69)
6N 3 k1 fl 2 k k ~i

k~i



7i
85

Equations (3.68) and (3.69) were evaluated as a function of the

correlation duration using the same code sequences as for Fig. 5, and

the results are shown in Fig. 8. As in the time-selective fading case,

it is assumed that 7k = Y for all k, il k<5 6, and d/N 0 = 10 dB. as

before, the correlation duration for a triangular channel covariance

function is defined to be XT . However, for a truncated exponential
c

channel covariance function, we define the correlation duration to be

the value of XT satisfying the equation gk(XT) = 1.0 (i.e., a satisfies
c

-aXT -aXT c

c]-l = 10"). Once again, this particular definition of

correlation duration was selected to minimize the effect of truncating gk(T).

From Fig. 8, we note that for small values of XTc, SNR for a frequency-

selective fading channel is degraded significantly. Because the frequency-

selective fading channel is the dual of the time-selective fading channel,

as was pointed out in Section 2.6, such a result could have been predicted

directly from Fig. 5 using a time-frequency duality argument. Physically,

* :what is occurring is that as the correlation duration of the channel goes

to zero, the correlation bandwidth of the channel approaches infinity. From

(2.84), we see that for small values of correlation duration, the frequency-

selective fading channel model may therefore be replaced by the non-

dispersive fading channel model of Section 2.7. Following an argument

identical to that used for this limiting situation in the time-selective

fading channel case, we see that small values of correlation duration

lead to a reduction of the receiver integrating effect on the diffuse

portion of the i-th signal. Note that the contribution to Z. of the

diffuse portion of the K-1 interfering signals is unaffected by the

correlation duration of the channel, as can be seen from (3.66).
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[ Figure 9 illustrates the dependence #f the signal-to-noise ratio

on the square of the transmission coefficient y for a frequency-selective

fading channel with a triangular covariance function using the same

signature sequences as used for Fig. 8. As might be expected, the

signal-to-noise ratio is degraded in proportion to the intensity of the

fading process. From Figs. 8 and 9, we may ascertain that for a given

signal-to-noise ratio to be achievable the parameters y and XT must be

constrained to a certain range.

The graph of SNR vs. S/N0 for a frequency-selective fading channel

with a triangular channel covariance function is shown in Fig. 10. As

in Fig. 7, the SNR curve "flattens-out" as c/N0 increases for the same

reasons as given for the time-selective fading channel.

IThe comments made in the last section about the choice of signature

signatures used to evaluate expressions (3.68) and (3.69) are valid for

the frequency-selective fading case, also. In particular, had the AO/LSE

phases of the m-sequences been used instead of the LSE/AO phases, the

results obtained would differ from the results presented in Figs. 8-10

by less than 0.006 dB.

In the discussion up to this point, we have not indicated which of

the two singly-spread channels is a better model for actual radio

channels, especially channels over which DS/SSMA communication systems

are to be used. We will now correct this omission. In practice, most

fading channels exhibit some degree of frequency-selectivity; in

particular, multipath channels are frequency-selective fading channels

(e.g., see [Stein, pp. 351-355, 1966]). In addition, because the bandwidth
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occupied by spread-spectrum systems (including DS/SSMA systems) is

typically quite large, the channels used by spread-spectrum systems often

appear frequency-selective to the spread-spectrum signal, even though

the same channel would not be frequency-selective to a non-spread-spectrum

signal transmitting the same data (see (2.84)).

From the above we may conclude that while the time-selective fading

channel may be a good model for some radio channels, the frequency-

selective fading channel model is of more practical value when discussing

the performance of direct-sequence/spread-spectrum communications via

multipath channels. Hence, in the remainder of this chapter, emphasis

will be placed on frequency-selective fading channels.

3.4 Comparison of Single-User PSK and DS/SS Communications via

Fading Channels

In Chapter 1 it was noted that spread-spectrum techniques could, with

the proper choice of modulation technique, be effective in combating

the effects of fading encountered by conventional modulation systems

(e.g., PSK, FSK) over communications channels. In surveying the

literature, we find many references which note in particular that use of

direct-sequence/spread-spectrum (DS/SS) modulation is effective in

combating multipath and the associated frequency-selectivity (see

Section 3.3) present on many channels (e.g., see [Cahn, 1974],

0

6
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"" [Jacobs, 19751, [Massey and Uhran, 19751, and [Viterbi, 19791). Although

several "heuristic" proofs of this conjecture exist ([Cahn, 19741, [Jacobs,

19751), to date no rigorous demonstration of this conjecture has been given.

In the following, we will give such a demonstration. In particular, we

will compare the performance of single-user PSK and DS/SS communication

systems over singly-spread Rician fading channels. Throughout this

comparison, average signal-to-noise ratio at the output of a correlation

receiver will be used as the performance measure.

From (3.40), we see that for a single-user DS/SS system operating

- over a time-selective fading channel, the average signal-to-noise ratio

at the output of a correlation receiver is given by

SNR + 2T2  0 r(u) (T-u)du "  (3.70)
ST 20

*Since the expression for average SNR given by (3.70) does not depend on

the signature sequence used by the DS/SS system, we may conclude that

n p equation (3.70) is also the expression for average SNR for a biphase

PSK system operating over a time-selective fading channel. For if the

signature sequence (a(i)] is identically one for -- < n < - in (1.2), the

DS/SSMA system model shown in Fig. 1 reduces to a PSK system, when K = 1.

From the above discussion we may conclude that so far as single-user

systems are concerned, the performance of PSK and DS/SS systems are

identical over time-selective fading channels.

For frequency-selective fading channels however, the result of this

comparison of the two systems is quite different. From (3.63), the average

* d SNR at the output of a correlation receiver for a single-user DS/SS

system operating over a frequency-selective fading channel is
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N ,, 2

SN -1
SNR~ = ~ (T)[R. (T)+R. (T) ]dT]2 (3.71)

T 0

The average SNR for a PSK system operating over a frequency-selective

fading channel may be found either directly from (3.52) by letting ai (t) = 1

in (3.11) or by noting that for a PSK system, Ri(T) = T and R i(T) = (T-T),

and using (3.71). Both of these results follow from the comments made in

the previous paragraph about the reduction of the DS/SS system model to

the PSK system model. Using either method, the average SNR for a PSK

system is found to be ::7

SNR -N 2Y2 g(T)[ 2 +(T-T) 2 ]d. (3.72)SNR 2
T2

In Fig. 11 we have evaluated eqs. (3.71) and (3.72) as a function of

2
the correlation duration of the channel for two values of y and for

- = 10 dB. In evaluating (3.71), we have used an m-sequence of length
N0

127 with its LSE/AO phase as the signature sequence for the DS/SS system.

Thus for the PSK system, the correlation duration scale is interpreted as

being marked in intervals of of a bit. The relatively large advantage

2
of DS/SS over PSK (e.g., 6.04 dB for X = 40, Y = 0.2) may be thought of

as frequency diversity of spread-spectrum communication. Most of this

improvement results from the multipath rejection capability of a properly

designed spread-spectrum system. It should be noted that this multipath

rejection is fully achieved only if the signature sequences have good

aperiodic autocorrelation properties. As will be seen below, poor choices

of signature sequences will result in a signal-to-noise ratio that is as

much as 3 dB below the DS/SS curve of Fig. 11.
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We will now examine Fig. 11 in greater detail. First, from (3.41)

and (3.65), for small values of correlation duration, g(T) approaches

a delta function of unit area. Since Ri(0) = 0 and R.(O) = T from (1.7)

and (1.8), we see that for a correlation duration of value zero, (3.71)

and (3.72) both reduce to

SNR =(N + 2.3""  (3.73)

i.e., the performance of the two systems is identical for XT = 0. From
c

2(3.73), we see that for XT = 0, SNR 8.239 for y =0.1 and SNR = 6.020 dB
c

for y = 0.2 for both systems. This convergence of performance at X = 0

as well as the performance of both types of systems at other values of XT
c

can be explained physically by considering the autocorrelation function of

the signature sequence together with the concept of multipath. To see

this, note that the continuous-time periodic autocorrelation function

ei(r) of a code waveform ai(t) is defined as

T -
i(T) -- i a(t-T) ai(t)dt (3.74)

0

Ri(T) + R(T) , (3.75)

where the last line follows from (1.7) and (1.8). Using (3.75) in (3.71),

we see that SNR for a DS/SS system operating over a frequency-selective

fading channel becomes

2 2
NOR 22 

r g(T)[e.() - 2Ri(T)Ri(T)]dT)2 (3.76)
T 0
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which is a function of both the aperiodic and periodic autocorrelation

11. functions of the code waveform. From the discussion in Section 2.6,

g(T) appearing in (3.76) may be considered to be a weighted "window-

function" on the allowable range of delay-spread of the multipath of the

fading channel. Thus for a given value of correlation duration, g(T)

"passes" only multipath having range delays less than XT c . Consequently,

multipath present on the channel will degrade the performance of a DS/SS

*system, the extent of degradation being determined by the exact form of

the continuous-time autocorrelation functions of the code waveform.

To give a concrete example of how the shape of the autocorrelation

functions of the code waveform affect the performance of the DS/SS system,

assume that the DS/SS system employs the N = 120 sequence given by

* (a(')) = [l,l,l,0,0,0,...). The magnitude of the continuous-time periodic

autocorrelation function of a. (t) is shown in Fig. 12. From Fig. 12 and

(3.76) we note that multipath signals having delays which are odd multiples

of 3T c/2 will be rejected by the DS/SS receiver. On the other hand,g
multipath signals having delays which are even multiples of 3T c/2 will not

be rejected by the receiver, thus causing degradation of the DS/SS system

performance. Multipath signals having delays of other values will also

tend to degrade the system performance, the extent of degradation being

determined by the value of JO(r)l for a particular value of delay T. Now

* consider the performance of the DS/SS system when an m-sequence of period 127

Fj
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e(T)

120

-3 0 3T

Figure 12. Magnitude Of the autocorrelation function of the
4 sequence fi,1,,,0,0... .3 (N =120).

127

-1 0 1

Figure 13. Magnitude of the autocorrelation function of an rn-sequence
I (N -12 7).
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is used for the signature sequence. The magnitude of the continuous-time

periodic autocorrelation function of this signature sequence is shown in

Fig. 13 [Stiffler, 19711. In this case, because of the "noise-like" periodic

autocorrelation function of the m-sequence, all multipath signals

arriving with delays greater than one chip duration will tend to be

rejected by the receiver, as can be seen from (3.76). Because of its

good periodic autocorrelation function an m-sequence is expected to be a

better candidate for a signature sequence than the "periodic" signature

sequence discussed above, when system performance is being evaluated for

4C W a frequency-selective fading channel. In Fig. 14 we have evaluated (3.76)

for three "periodic" signature sequences of length 120 having periods of

2, 6, and 12, respectively, and for one m-sequence of period 127 for a

triangular channel covariance function and for = 0 dB, Y = 0.2. From

this figure we see that our conjectures about the performance of the two types

of signature sequences are valid. For values of X greater than two, the

m-sequence outperforms all other signature sequences, primarily due to the

periodicity of the periodic autocorrelation functions of the other signature se-

quences. Note that for X - 20, the difference in performance of the two types of

signature sequences is 2.87 dB. The reason that all of the SNR curves exhibit a

bi
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[ tgeneral upward trend is due to the unit variance constraint (3.65) on the

channel covariance function g (T). For large values of correlation

duration, g.(T) is "spread-out" over the range 0 < T-5 XT and since the

area under gi (T) is constant, the magnitude of gi(T) decreases for

increasing values of XT, resulting in a smaller contribution of the

integral term appearing in (3.76).

The above explanation has centered upon the periodic autocorrelation

function of the code waveform as the basis for DS/SS system performance,

without taking into account the aperiodic autocorrelation terms which

also appear in (3.76). In addition, we have neglected the "smoothing"

effects of the integral appearing in (3.76). Thus the explanaLion given

above should be treated as a "first-order" model of what is physically

occurring in the DS/SS system. Nevertheless, this first-order model is

accurate enough to predict the performance of a PSK system over a

frequency-selective fading channel. Treating the PSK system as simply

Ua DS/SS system with a constant-code waveform, the periodic autocorrelation

function of the PSK code waveform is a constant function. Thus the PSK

system does not reject any multipath signals, resulting in its inferior

performance compared to a DS/SS system using an m-sequence for its

signature sequence.

3.5. Performance Evaluation for Random Signature Sequences

In this section approximate expressions are obtained for SNR. for

both time-selective and frequency-selective fading channels with a

specific channel correlation functioa. These approximations arc the

expected values of SNR. when the signa* re sequences are random binary
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sequences. By random binary sequences we mean a set of K statistically

independent binary sequences (a(k)I, I < k -- K. Each sequence a(k) is
n

a sequence of independent random variables a(k)n for which Prta(k) +] =
Pr~a (k ) =-11 = . The expected value of SNR is just the average

n i

signal-to-noise ratio SNR, where the averaging is over all possible sets

of K binary sequences of period N. One reason for computing SNR is that,

in some sense, SNR is a measure of the asymptotic performance of a DS/SSMA

system for which the signature sequence length N is very large [Roefs, 1977].

A second reason for computing SNR is that, as we will show below, SNR is

* a close approximation (for a reasonable set of signature sequence) to E."

SNRi, yet evaluation of SNR does not require computation of the aperiodic

correlation functions of any specific sets of signature sequences.

First we note that for random binary sequences the moments of the

aperiodic autocorrelation functions are given by

0,1*O
. [~ckG,) ] =

N,1=0 (3.77a)

L

* N , L=0 (3.77b) ..

0, , ki"
E(C (L)Ci(J)] ,

N , 1=0 (3.77c)

E[Ck M)Ci(a+ 1)] 0 Yk,i (3.77d)

0
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[Equations (3.77a)-(3.77d) were previously derived by Roefs (1977) except

for the case L = 0 in (3.77a) through (3.77c). From the definitions of

Ck(1) and random binary sequences, for I = 0 we obtain

r
N-1i k N-i

E(Ck(0)) E( Z [ak)12 = ECZ 1) N. (3.78)
kj=0 j=0

Similarly we find that

N-i N-i

C2 ( N-1 (k) 2 N1 ) 2  2
mCk,i(O) E E [a. E h N Vk,i (3.79).- j =o h=0

Using (3.77), we may evaluate the expected values of the code-dependent
terms in (3.46) and (3.47). Let S-- TA [Z[Var Fi + Var i + N TI' ,

where Var F. and Var I. are now random variables because the signatureL 3.

sequences an ] are random. Using the above results, we find that for a

time-selective fading channel with a triangular channel covariance

t [function, SNR is

2 2 -1 No
SNR = [1 - ± ] + -+6 + +K-)N (3.80a)

NR=(N( 3 N 6N 3N 2

for X < 1 and

2 1 +, 2 + (K-1)[i - i (K-i) + No (3.80b)SNR - (YN [i-" ]+3N 4X] 3N 24 '

for X z 1. The corresponding result for a time-selective fading channel

with a truncated-exponential channel covariance function is

4.

K
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2-- -aX
SNR = [ [(1 - e ) +N - (e'aX + 1)-i)]

+ S 2 (Kii e-) + iNa Not

N- [(1 - ) -2(1 (1-e° (ao + i)))

+ (2 (p 2 + )+ + (K-) + N (3.81a)
a a 3N 2di

for X < 1 and

s2 - [(l-e-a) + - (e-X (a + 1)-i)]
Na Na

+2y2 (K-) [ + 2 -a) (K-i) + (3 .81b)

Na a a 3N

2 y2

for X 1 1, where as before, Yk =  for all k.

Similarly, SNR for a frequency-selective fading channel with a

triangular channel covariance function is given by.

_ _1 p 2 + 3 (K- ) 2 N0
NR XN 2 (N+l + 3 (+2Y) + (3.82a)

for X < 1,

0 2
- I 2NLr - 'N 1" 3) 1 P)SNR XN " 2" 3 ) - + ( ( + ))

2 3 I(i+ K)] -3lt 2 N38b) ,

- 2(1 _1(i+ j p))+ Z ( - 2 (K-)+22)+ (382b)

for 1:- X < 2, and
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X N 3 12 4 X 3 X 3 X

++K ) ) ' (3.82c)

for 2:5 X < N-i. The corresponding result for a frequency-selective

fading channel with a truncated-exponential channel covariance function is

=N_ 2 (l-ea + 1))

(1-e )

+~~~~ (1++( -~ 22 + + (K- 1) 2)+ ,(.8a

(1 + 2 e~a3 2 (l+2y No(.8a
N a 3 I

for X < 1,

222

(l-e ) (-- +-e(~

+ + 12 -c (( )+ ) +2(l + N

a c

+- + (a-++)+e(1-e+00)]+]

N 22

La
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for 1:5 X < 2, and

SN-R Y -- ~- [N( i-e-a -- + - (a +1)
(i-e -X)N 2a a1

2 a + + n-i t -
+ (N + N)(_z - e- (+--)+ Z e- (N(-e)

2 a 2

-2N[-(al + i)-e a(aG~. + 1) +1)) - I(i-e )]

+ 2N (12 + - + -Z) - e a((.e + 1)2 + 2(.Z + 1a 2 a2
a a

-- + L'.(e -a (a(I + 1) +1) - aL 1) + 2 (1ea

-an -ap 14
+e [N(I-e )-2N(- (an + 1 -e (a(n + ~)+1)

2 2n 22c
nle ,+/\Nn a 2- a 21eCP(n+ ~ 1

a 2ao

+ 2 (e-O(a(n + + 1) an-i) (1e0

+ - (1+ y+ 2 2 (3.83c)

for 2:5 X < N-i. Note that expressions (3.80) through (3.83) for SNR

are functions only of the channel covariance function, the parameter -Y2

0the number of users K, the length of the signature sequence, and the bit

energy to noise spectral density.
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In order to ascertain the accuracy of the above results as an

approximation to (3.46), (3.47), (3.68), and (3.69), SNR was evaluated

2
for various values of y and XT for N = 127, K = 6, and these results

c

were compared with those obtained in Sections 3.2 and 3.3 for the

corresponding channel type and channel correlation function. For the

2
ranges of y , XT, and S/N used in Figs. 5 and 8, the expression for SNR

, 0

differed from the exact expression for SNR. by less than 0.05 dB, for the

specific signature sequences used to obtain Figs. 5 and 8. As a further

check on the accuracy of the above results, (3.46) was evaluated for a

maximal-connected set of m-sequencss using LSE/AO phases [Pursley and

Roefs, 1979] for N = 31 and N = 63 and the results were compared with the

corresponding results obtained from (3.80). Once again, for *y2 in the

range 0.05 ! 0.2 and X : O.1N the difference between SNR and SNR. was
2.

found to be less than 0.05 dB. Thus, based on this comparison of

numerical results, we conclude that SNR is a very good approximation to

SNR. for the sets of signature sequences used above. Furthermore, from

the comments in Section 3.2, it follows that SNR is also a good

approximation to SNRi for maximal-connected sets of m-sequences of length

4 127 with AO/LSE phases. Since the expressions for SNR are considerably

easier to evaluate than the corresponding exact expressions, the quantity

SNR is a useful approximation for the preliminary design of a DS/SS system

4 operating over a Rician fading channel. Examples of this application of

SNR for the AWGN channel may be found in [Pursley and Roefs, 19791. It

should be noted that in the absence of fading, expressions (3.80)

through (3.83) all reduce to the expression obtained by Roefs and Pursley

(1977) for SNR for the AWGN channel by setting y = 0 in (3.80)-(3.83).
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The accuracy of the expressions for SNR as approximations to SNR. -

for the sets of signature sequences studied above (i.e., maximal-connected

sets of m-sequences with LSE/AO or AO/LSE loadings) does not imply that

any arbitrary collection of m-sequences will provide the same performance.

As an example of this, (3.68) was evaluated for N = 31, K = 3, using two

different collections of m-sequences. One set maximizes the parameters

rk,i and the other minimizes rk,i. These two sets were found by an

exhaustive search of sets of 3 m-sequences of length 31 having every

possible phase [Garber, 1978]. The comparison of (3.82) with (3.68) for

these two sets is shown in Fig. 15 for y2 = 0.05. Note that there is a

significant difference (> 0.7 dB) in performance between the best set

(curve 1) and the worst set (curve 3) of signature sequences. This
" 2 "

difference is larger for larger values of 6/N 0 or smaller values of Y

2
For very large 4/N 0 and very small y , this difference is given by

0K

Z r (worst case)Sk~l rk ' i

ASNR(dB) 10 g (3.84)

I E rk 1 (best case)

*k=l
k~i

which, for these two sets of signature sequences, is 2.353 dB.
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CHAPTER 4

PROBABILITY OF ERROR BOUNDS FOR DS/SSMA COMMUNICATIONS

VIA FADING CHANNELS

In Chapter 1 we noted that for DS/SSMA communications via an AWGN

channel, three measures of system performance are available: average

signal-to-noise ratio (SNR), worst case performance, and probability of

error (P ). In the previous cha ter we have analyzed the performance of

DS/SSMA communications via fading channels using SNR as the system

performance measure. In this chapter we analyze the performance of

DS/SSMA communications via fading channels using probability of error at

the output of a correlation receiver as the system performance measure.

The results obtained here represent a generalization of the performance

analysis of [Yao, 1977] which considered only AWGN channels.

Although we shall use probability of error as the system performance

measure, as noted in Section 4.1, exact evaluation of the probability of

error at the output of a correlation receiver for a DS/SSMA system

operating over a fading channel is very difficult. Hence we shall

concentrate our effort on obtaining bounds on P . Specifically we shalle

bound P through the use of an isomorphism theorem from the theory ofe

moment spaces which provides relationships among arbitrary moments of

a random variable.

Throughout this chapter we shall concentrate on the two singly-spread

channels considered in Chapter 3: time-selective fading channels and

frequency-selective fading channels. With appropriate changes in the

equations that follow, the results presented below may be generalized

to other classes of WSSUS fading channels.

0



109

4.1. Moment Space Bounds on Probability of Error

In this section we shall present the general problem of obtaining

moment space bounds on the probability of error at the output of a

correlation receiver for the DS/SSMA system model considered in Chapter 3.

In Sections 4.2 and 4.3 we shall consider specific examples of the moment

space bounding technique applied to time-selective and frequency-selective

fading channels for second and N-rh moment bounds, respectively.

From Chapter 3, we found that for a DS/SSMA system operating over a

doubly-spread fading channel, the output of the correlation receiver

matched to the i-th user's phase-coded waveform is given by (see 3.18)

Z. = N. + D. + F. + I. (4.1)

where N. and D. are given by (3.14) and (3.12), respectively and F. and I.
defne1by(31)

are the real parts of the complex quantities F. and 1. defined by (3.13)
art2.

and (3.15), respectively. Assuming that the data bit b takes on theI" i,0

values [+I,-I] with equal probability, the probability of error at the

output of the i-th correlation at the decision instant t = T is given by

Pe = Prterrorlbi,0= -1) + Prterrorlbi, = +1)

Pr(Z i > 0IbiO = -13 + PrtZi < 01bi, 0 
= +13

- E(Pr[Zi > Obi(t),bi, = -133 + E(Pr[Z i < Olbi(1),b, = +111

(4.2)

Note that in (4.2) we are simply evaluating Pe conditioned upon bi(t)

and then averaging over bi(t) to obtain an expression for P
i e
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For convenience, define h 5 J2 T and z - F. + I.. Then the first
3. 3.

term inside the curly brackets of (4.2) may be rewritten as

PrZ i > 01bi(t),bi, 0 = -I3 = EtQ(h z)Ibi(t),bi = -ii (4.3)

where Q(x) 1- (x) and a = 0 is the standard deviation of NNi

(see 3.19). In (4.3), the expectation over z conditioned upon bi(t) and

b 0 --1 denotes expectation over all the random variables bk(t)(k # i),

Tk' Ok' and Pk(Tt) appearing in z. Since given b. (t), z is symmetric

about zero, (4.3) may also be written as

Pr(Z. > 01bi(t),b -1) E E3,Q ---- # + Q )lbi(tl,b , -1)z.4.4)vI~t,bi, 0  EtQ~t. Q(z ,= -13 (4.4)
i i iaO a 3. 3,

In a similar fashion, the second term inside the curly brackets of (4.2)

may be expressed by

.h+z. h-z+1 (45""
PrZ i < 01bi(t),bi,0= +1 = E Q( T-) + Q- b i(t),b0 +1 (4.5)

From (4.2), (4.4), and (4.5) we find that0
Pr~errorlb, 0 - -1= E[EQ(--)+Q(--)jb.(t),b. -1bi 0

* and

Prterrorlb +1= E[EhQ(- -)+Q(h-z)bi(t),bi,0- b,0 1 (4.7

Hence, if the expectations in (4.6) and (4.7) can be evaluated, the probability

of error at the output of the i-th correlation receiver may be obtained.

;-
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Several approaches are available for evaluating (4.2). The first is

the direct approach, in which the expectations in (4.6) and (4.7) are

directly evaluated. In general, because of the complicated form of z,

however, P is very difficult to evaluate either analytically ore

numerically. To give an indication of the amount of difficulty required

to evaluate (4.2) numerically, a recent attempt to evaluate the expecta-

tions in (4.6) over only Tk and bk required 1.4 minutes of CPU time on a

Digital Equipment Corporation DEC-10 computer system for a two-user

DS/SSMA system employing a code sequence of length 127 for a single

value of 6/N . Clearly the analytical or numerical approach to evaluating

(4.2) becomes unwieldy for larger numbers of users, longer code sequences,

or a large number of S/N0 values.

A second approach to evaluation of (4.2) is by simulation and use ofI
the Monte Carlo method. Such an approach was taken by Orr (1977) in

evaluating the probability of error of a DS/SSMA system using a slowly-

fading (nondispersive) fading channel. The major drawbacks of the

simulation method of evaluating P are that the technique requires ae

considerable amount of computation time and that it provides very little

insight into the design aspect of the problem.

A third technique to evaluating (4.2) and the one employed in the

remainder of this chapter is the moment-space bounding method. In order

to understand the theoretical background for the moment-space bounding

method, we will now state, without proof, an isomorphism theorem [Yao, 1977]

originally developed in the theory of games ([Dresher, et. al., 1950],

[Dresher, 1953]) which provides relationships among arbitrary moments of

a random variable.
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Isomorphism Theorem: Let Y be a random variable with a probability

distribution function Gy(y) defined over a finite closed interval

I = [a,b]. Let kl(y),k 2 (y),...,kN(y) be a set of N continuous functions

defined on I. The generalized moment of the random variable Y induced

by the function k. (y) is

M= 1ki(y) dGy(y) = Eyki(Y)2, i = 1,...,N. (4.8)

We denote the N-th moment space 57 by

b
= [m - (m l ,...,m, ) E'- RNIm.i = (y)dGy(y) <_ i <_ N,G P(1) (

a

where P(I) is the set of probability distributions defined on I = [a,b]

and RN denotes N-dimensional Euclidean space. Then 57 is a closed, bounded,

and convex set. Now let C, be the curve r = (rl,...,r N) traced out in R
N

by r. k.(y) for y in I. Let X be the convex hull of ,. Then2. 2

{=5?. (4.10)

A brief proof of the above theorem may be found in [Yao and Tobin, 1976];

a detailed discussion of the proof is given in [Dresher, et. al., 1950].

To demonstrate how the isomorphism theorem can be used to solve

the problem at hand, let N = 2 and let k2 (z) be equal to the expression

inside the curly brackets of (4.6). Let k1 (z) be some continuous function

of z whose generalized moment mi given by (4.8) may be readily evaluated.

Now consider a plot of k2 (z) versus k1 (z) and denote the convex hull of

the resulting figure by X. From the isomorphism theorem, K = /7 so that

knowledge of mI = Etk1 (z)Ib i (t),b  = -1) enables us to obtain bounds on

m 2 = Etk 2 (z) jbi (t),bi --= -I). But by our choice of k2 (z),
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Prderrorlb.(t),b i  = -13 = m (4.11)

so that we have, in fact obtained bounds on the conditional probability

of error, conditioned upon bi(t) and b. = -1. Repeating this processi,0

for Prterrorlbi(t),bi = +1 and averaging the sum of these two bounds

over b. (t), from (4.2) we see that we have bounded the probability of error

(P ) through use of the isomorphism theorem.
e

In practice, we would like to choose kl(z) so that the convex hull

of the plot of k2(z) versus k (z) is "thin" and hence the P bounds

obtained are tight. Ideally we would like to choose k1 (z) = k2 (z), in

-"which case the convex hull 3C is infinitely thin and the upper bound

U L
P equals the lower bound P . However, this would requiree e

knowledge of m2 = Ek 2 (z)3 which we assumed could not be directly

F evaluated. Thus in choosing kl(z) we must, in general, trade-off the

thickness of X with the ease of evaluating mI1 . Based on previous results

in the published literature ([Yan, 1975],[Yao and Tobin, 1976],[Yao, 1977])

apromising choice for k(z) is kl(z) = z , where N is even. The error

bounds resulting from such a choice are known as N-th moment bounds.

For a given choice of k1 (z) and k2 (z), three methods are available

for evaluating PeU and PeL through the use of the isomorphism theorem:

graphical techniques, numerical techniques, and analytical techniques.

The graphical technique is attractive from the viewpoint that in order

to employ it, we need only plot k2 (z) versus kl(z) over the range of z

and complete the convex hull X by means of a straightedge. Assuming that

m I is known, the conditional upper and lower error bounds, conditioned

OS

Si l
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upon b.(t), may be read directly off the graph. Repeating this process

for all data bit patterns b. (t) of interest and averaging the conditional

U L
error bounds over b.(t), we obtain bounds on Pe and Pe . However as

L

pointed out in [Yan, 1975], for sufficiently complex plots of k2 (z) versus

kl(z), determination of 3C by eye becomes quite difficult. In these cases,

it becomes necessary to find K by numerical or analytical means. As

might be expected, the numerical technique involves finding the convex L

and convex ') regions of C, through numerical evaluation of the second

derivation of k2 (z) with respect to k1 (z) over the range of z. The

convex hull of C, is then found directly using numerical techniques. The

analytical approach to finding X is by writing equations for K based on

knowledge of the convex regions of 0. From a design viewpoint, the

analytical technique of finding K is the preferred method since the

resulting equations describing K are explicit functions of the DS/SSMA

system parameters and the fading channel characteristics. Because bounds

U L
on Pe and P are determined by X and mi, DS/SSMA system performance can

therefore be optimized for specific fading channels. In practice, as

noted in Sections 4.2 and 4.3, the actual method used in evaluating X is

a combination of both numerical and analytical techniques.

The above techniques of bounding P through the use of the isomorphisme

theorem have already been used successfully in the evaluation of the

performance of several other types of communication systems including

binary pulse-amplitude modulation (PAM) systems with intersymbol inter-

ference ([Yao and Tobin, 19751,[Yan, 1975],[Yao and Tobin, 1976]),
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coherent phase shift keyed (CPSK) systems with cochannel interferenceIr
[Tobin and Yao, 1977], DS/SSMA systems over AWGN channels ([Yao, 1976a],

[Yao, 1976b],[Yao, 1977]), and PSK systems employing bandpass limiters

[Yao and Milstein, 1978]. In all of these studies, either Nth moment

(i.e., k1 (z) = zN) or exponential moment (i.e., k1 (z) = exp(c(h+z))

where c is a constant chosen to optimize the bounds) bounds were used to

bound the probability of error. In the next two sections we shall apply

Nth moment space bounds to bound the probability of error of DS/SSMA

systems operating over specific classes of fading channels.

4.2. Second Moment Bounds

In this section we shall evaluate the second moment space bound on

the probability of error for a DS/SSMA system operating over either a

a time-selective or a frequency-selective fading channel. In the following

section we shall generalize the results obtained to Nth moment bounds.

In order to clearly present our results we shall first consider the time-

selective fading channel and later, the frequency-selective fading channel.

At the end of this section we will present various criteria that are useful

in selecting the range of z denoted by I in the isomorphism theorem of the

previous section.

- 4.2.1. Second Moment Error Bounds for Time-Selective Fading Channels

To simplify the derivation of moment space bounds for the probability

of error of a DS/SSMA system with a time-selective fading channel, instead

of deriving results directly from the doubly-spread fading channel model

as was done in Section 3.2, we shall use the simpler (but equivalent)

4 ............ .
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model of a time-selective fading channel developed in Section 2.5.

Hence, from (2.52) and (2.53), the output of the i-th correlation

receiver for a DS/SSMA system with a time-selective fading channel is

given by (4.1), where D. and N. are given by (3.12) and (3.14),1 1

respectively and F. Re[F 3 and I. = I. + I where
3. i 1 1. i

T
F. = A f yi Pi(t)bi(t)dt (4.12)

K
I. Rei } -- Re( k ': Yk,i d (4.13)

k~i

V Re(I! = R~tA Z (4.14)

ki

and

Ik,i -0 Ok (t-Tk)hk'i(rk;t)exp(JcPk)dt (4.15)

T

hki h (T kt)exp(jcpk)dt. (4.16)

In (4.12) and (4.16) k(t) is a zero-mean, unit variance complex

* Gaussian random process with covariance functions

E( Pk(t)p(s)) = rk(t-s) (4.17a)

* Etok(t00k(s)) = 0 (4.17b)

0
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K From Section 4.1 we note that in order to determine second moment

bounds on P , we must first evaluate the moments

m E[z lbi(t)) (4.18)

where z is defined as in Section 4.1 and the expectation is over all

bk(t) for k # i, Tk and Pk(t) in z conditioned upon all values of b.(t)i-.
of interest. As in Chapter 3, we shall model the phase angles, time

delays, and data symbols for the k-th signal as mutually independent

random variables which are uniformly distributed on [0,2TT], [0,T], and

f+l,-l, respectively. From (4.12) through (4.16) we find that

Ez2 lbi(t)) = EtFi21bi(t)) + E[I. 2bi(t))

= EtFi21bi(t)) + E[I 2](4.19)

where we have used fact that I is independent of b. (t) and that the c~k

are independent random variables. Because F. and I. are identical to
3. L

the terms F. and I. appearing in Section 3.2, noting that I. is a zero
. 3 32

mean random variable, the term E(Ii appearing in (4.19) is identical

to Var Ii, previously evaluated in (3.39). Furthermore, using (1.1)

in (4.12), we find that

T
F Pi(t)dt. (4.20)?i bi,° S f0~

0

Hence using (2.10) and (4.17), we find, as in (3.31), that

T T
E(F!P b ri(t-s)dtds

i ~2 T0J0

- P ri(u)(T-u)du, (4.21)

k~0
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which is independent of bi(t). Thus from (4.18), (3.39), and (4.21),

Ez 2 bi(t)) = EFi 2 3 + Ei 2

= m(z 2 ) = mI , (4.22)

a result independent of the choice of b. (t).

Once the finite closed interval I of z is known, as required by the

isomorphism theorem, we may evaluate second moment error bounds for a

DS/SSMA system with a time-selective fading channel. Let the distortion

D be defined as the maximum value of the random variable z, i.e.

D = maxiz l. (4.23a)
Z

By the symmetry of z about zero, the interval I defined in the

isomorphism theorem may therefore be taken to be I = [-D,D]. However

by the choice of k2 (z) made in Section 4.1 (see (4.6)), we may reduce the

actual range I to the interval I = [0,D] because of the symmetry of k2 (z)

about zero. In Section 4.2.3 we will present various criteria for the

actual selection of D.

In Appendix B, a pre3entation of the methods used to evaluate the

convex hull of the plot of k2 (z) versus kl(z) over I is given along with

development of the conditional upper and lower error bounds, conditioned

: upon bi(t), through the use of the isomorphism theorem. Once the -

conditional error bounds are known, from (4.4), (4.6), and (4.7) we may

U L
obtain bounds on P and P

e e
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Lr In Figure 16 we have plotted upper and lower second moment space

bounds on the probability of error for a DS/SSMA system with a time-

selective fading channel with a triangular channel covariance function as

a function of the bit energy to noise spectral density. In plotting

Figure 16 we have used a value of normalized distortion of 0.5, where the

normalized distortion D' is defined by

iD

D' . (4.23b)h

In addition to the upper and lower error bounds, we have also plotted

the Gaussian approximation to the probability of error

GP = 1 - §(SNRi) (4.24)Se I

* where SNRi is given by (3.40) for a time-selective fading channel. The

Gaussian approximation is exact when F. and I are Gaussian random
3. i

variables [see the definition of SNRi, eq. (3.28)]. Note that for small

values of 8/N0, the bounds on P e are quite tight. However for larger

values of (/N0, the upper bound on Pe becomes practically useless.

Furthermore for larger values of D', larger numbers of users, and

shorter signature sequences, even the bounds for smaller values of

/N 0 become loose. This phenomenon of second order bounds was also
02

noted by Yao (1977) for DS/SSMA systems with AWGN channels. To improve

the probability of error bounds, in Section 4.3 we will consider Nth

moment bounds for n > 4.
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4.2.2. Second Moment Error Bounds for Frequency-Selective

Fading Channels

Following the evaluation of second moment bounds for the time-

selective fading channel as presented in the previous subsection, we

shall now evaluate the second moment error bounds for a DS/SSMA system

employing a frequency-selective fading channel. Once again we shall use

the singly-spread channel characterization of the frequency-selective

fading channel developed in Section 2.6 rather than employ the equivalent

method of developing the frequency-selective fading channel model from

the doubly-spread channel model, as was done in Section 3.3. For a

DS/SSMA system with a frequency-selective fading channel, the output of

the i-th correlation receiver is once again given by (4.1), where N.

and Di are given by (3.14) and (3.12), respectively. In this case,

however F. and I are given by F. = ReR ]) and I . I. + V! where
2. . 2 2.2. . 2.

T
F.- = ' yi i(T )I hi(T ;t)dtdT (4.25)

. -- 0

K
I =e(^I i- E k(4.26)

2. k=l Ykk,i

k~i

K
I. = Re(I!] = ReC2P E I' .] (4.27)
2. k=l

k#i

and
T

k,i f ck(T)f0 hk' (Tk + T;t)exp(J(Pk)dtdT (4.28)
-0
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I' (T ;t)exp (jp)dt (4.29)
0 k'i(ck

In (4.24) and (4.27) Pk(T) is a zero mean, unit energy (i.e.,

a2
ab 2= in (2.74)) complex Gaussian random process with covariance

functions

g[ k(T)P(o)] = gk(T)6(T - C) (4.30a)

and

E( ) = 0 . (4.30b)

In order to obtain moment space error bounds for the frequency-

selective fading channel case, we must again obtain bounds on the

innermost conditional expectation of (4.6) and (4.7) through the evaluation

of mI = Ez2 lbi(t) . For the time-selective fading channel case, it was

found (see (4.20) above) that Fi was dependent upon the data bit b

only. Hence conditional error bounds were needed for only two data

bit values: b. +1 and b -1. From the form of (4.25), however,
3.,0 i,0

for the frequency-selective fading channel case, conditional error bounds

are needed for an infinite number of data bit patterns because the

frequency-selective fading channel exhibits memory. To display this

dependence of F. on all preceeding and successive values of data bits,

using (1.1) and (3.10) in (4.25), we find that

~T
vlp -Y b. ij P T (t-T-AT) ai(t-T) ai(t) dtdT

0 0L=-=

(j+l)T
S ' P i(T)(-jT) + b ..jR(Ti-jT)]dr (4.31)

j=-m jT
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where R.(T) and R.(T) are defined by (1.7) and (1.8), respectively.

Clearly, we cannot evaluate an infinite number of moment space bounds

as required by (4.6), (4.7), and (4.31). Hence we must truncate the

*number of preceeding and successive data bits required to evaluate (4.6)

and (4.7) in some sensible manner. Note that this corresponds to the

problem of evaluation of the probability of error of a baseband PAM

system with intersymbol interference (e.g., see (Lucky, et. al., 1968]).
4M

In Section 3.3 we assumed the selectivity of the channel is such that only

the two adjacent symbols need be taken into account in evaluating the

performance of a DS/SSMA system with a frequency-selective fading

channel. If we also apply this constraint to (4.31), (4.31) reduces to

T T

F. = V i T ) hi(T;t)dtdT (4.32)
_T 0

Note that the constraint on i(T) implied by (4.32) is a stronger

constraint than that made in (3.51), since the former is actually a

constraint on the range spread of the channel [Van Trees, 1971], while

the latter is a constraint on the selectivity of the channel. In a

similar manner, (4.28) becomes

T T

k,i -T Pk(T ) 1 hk,i(Tk+T ;t)exp(jk)dtdT (4.33)

Thus for the frequency-selective fading channel case, we need to

evaluate the conditional bounds on the probability of error for 8

different sets of the bit pattern (b,.l,bi,0,bi,+l3. Each evaluation

of the conditional error bounds requires evaluation of m 1 Etz 2 lbi(t)]
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for one of the eight bit patterns. Following the same reasoning given

for (4.18), Etz2 lbi(t)) is given by (4.18), where for the frequency-

selective fading case, E(i 2 is given by Var I. in (3.62). Using (2.10)i i
22

and (4.30) we find that E[Fi 2 1bi(t)) is given by (3.54). Thus we can

evaluate m1 for each of the eight sets of bit patterns.

Using the methods of Appendix B, we have evaluated the second moment

space bounds for the probability of error of a DS/SSMA system with a

frequency-selective fading channel having a triangular channel covariance

function and have plotted the results as a function of 6/N 0 in Figure 17.

In plotting these results we have used K = 2 users employing signature

sequences of length 127 and have assumed a normalized distortion of

D' = 0.5. In Figure 17 we have also plotted the Gaussian approximation

(4.24) to the probability of error, where SNR. for the frequency-
3.

selective fading channel is given by (3.63). The conmments made in the

previous section on the looseness of the second order moment space bounds

apply here also. In Section 4.3 we will consider higher order moment

space bounds in an effort to tighten the bounds on the probability of

error.

0 4.2.3. Selection of the Normalized Distortion

Up to this point we have not given any consideration toward selecting

the value of the normalized distortion D' to be used in evaluating the

moment space bounds for a DS/SSMA system operating over a given fading
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channel. From the isomorphism theorem of Section 4.1 and the determina-

tion of moment space bounds given in Appendix B, such a selection of a

particular value of D' is required before moment space bounds can be

obtained. In this subsection three possible criteria are given for

selection of D'.

At first examination, it may appear that determination of D' is

straightforward from the definition of D' given by (4.23). Further

examination of z however reveals that because we have assumed Pk(T; t) to

be a complex Gaussian random process, the "tails" of Reok (T;t)) are

infinite and hence D' = . The isomorphism theorem requires, however,

that D' be finite. Our goal then is to sensibly choose a finite D'

in such a manner that truncation of D' will only marginally affect the

actual bounds.

The first approach will be termed the distribution function method.

Basically this method assumt a priori knowledge of the distribution

function of z in order to sensibly truncate the "tails" of z. One method

of truncation is to simply assume that the tails of z may be neglected if

Prtz > D 1 e (4.34)

where P is the probability of error. For example, if z is r-sumed toe

2be a zero mean Gaussian random variable with variance a , for o 'n the

order of 10" , D should be selected so as to satisfy

D 2 4.753423 a (4.35a)

or

D' Z 4.753423 h (4.35b)

4h
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o, . Of course the major drawback of this method is that we have also assumed

P could not be evaluated directly, which would be the implication if
e

* the distribution function of z were known (see (4.1)). Still, this

method merits consideration for cases in which the moment space bounds

are exceptionally tight and an approximating distribution function for z

yields results for P which lie between the upper and lower bounds.e

A second approach utilizes Chebyshev's inequality to obtain a finite

value for D'. By Chebychev's inequality we have that

Pr (zI D] <- -E:5 n) (4.36)

Dn

Since we have assumed that the moments ECzn2 can be evaluated, (4.36)

may be used in a manner identical to (4.34) to bound D'. As an example

f of this, for the second moment case for values of Pe on the order of 10 - 5 ,

we choose D to satisfy

-6 2

106-6  (4.37)

3a2 2
or D' 10 - , where a = Etz 3. Assuming that higher order moments of

z can be evaluated, we may then use (4.36) to further reduce this

initial choice of D'

A third approach to choosing D' is based on the actual DS/SSMA

system dynamic range. Because any physical system must have a finite

dynamic range, D is automatically limited to the dynamic range of the

DS/SSMA system. If we use this approach to limit the range of D', we

must have prior knowledge of the actual system dynamic range.



128

Ideally we would, of course, like to choose D' as large as possible

so that the effects on the probability of error bounds of truncating D'

can be minimized. Fortunately, as will be seen in the next section,

for Nth moment space bounds, the probability of error bounds are

relatively insensitive to the choice of D', for values of D' greater

than a certain minimum value. For the remainder of this chapter we

will compute moment space error bounds with the assumption that D' has

been computed using one of the three methods outlined above.

4.3. Nth Moment Bounds

In this section we shall consider Nth moment bounds for n > 2. Our

goal here is to obtain tighter moment space bounds on the probability of

error of a DS/SSMA system with a fading channel than could be obtained

using the second moment bounds of the previous section.

4.3.1. Fourth Moment Bounds

As noted in Section 4.1, in order to evaluate the Nth moment space

bounds on the probability of error of a DS/SSMA system with a fading

channel, we first need to evaluate the moment

m1 = E(Zn bi(t))

= E([F. + Ii~nlbi(t)) (4.38)

for all data bit atterns b.(t) of interest. For the fourth moment space

bound, we therefore need to evaluate

E[[Fi+I i 4 lbi(t)) -E[F 4+4F 31 +6F 21 2+4F 'I 3+I 4 lb(t)) . (4.39)
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F In the following we shall assume that the fading processes (T;t)

and Pk(T;t) are independent for j # k. Then from (3.13), (3.15), and

(3.16), (4.39) reduces to

E [Fi+1i 41 bi(t) = 4+6Fi21 i2+1 4i(t))

= EFi 4bi(t)3+6EFi2 bi(t))EIli2]+E[li 4 j (4.40)

- where we have used the fact that I. is independent of b.(t) and that

-k(T;t) is a zero mean process. The middle term of (4.40) has been

previously evaluated in Sections 4.2.1 and 4.2.2 for time-selective

fading channels and frequency-selective fading channels, respectively.

Hence in this section we shall concentrate on evaluating the first and

last terms of (4.40). Recognizing that F. = ReOFi] and I. 
= ReI id,

in order to evaluate the fourth moments of these quantities, we shall

need the following identity which may be derived directly from (2.10):

8Re(w)Re(x)Re(y)Re(z) = Re(wxyz)+Re(w*x*yz)+Re(wxy*z)

+ Re (w*x*y*z)+Re (w*xyz)+Re (wx*yz) +Re (w*xy*z)

+ Re(wx*y*z), (4.41)
0

for complex numbers w, x, y, z.

From (4.40), (4.41), (3.15), and (3.16), we note that the fourth

moments of F. and I. will be a function of the fourth moments of Pk(T;t),
1. 1k

for I < k:5 K. To evaluate the fourth moment of k (T;t) we shall make

use of the following theorem due to Reed (1962) and Miller (1968).
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Theorem: Let x(t) be a zero-mean, complex Gaussian random process with

covariance functions

E(x*(t)x(s)) = R(t,s) (4.42)

Etx(t)x(s)] = 0 (4.43)

Suppose xn x(tn) for n E (1,2, ... ,N) are samples from x(t).n n

a.) If s # t, then

E~x* x* ... x* x x ... x ]=0 (4.44)mI m2  m n n2 nt

where mk and nj are integers from the set [l,2,3,...,N3.

b.) If s = t, then

Etx* x* ...x* x x ...x -
ml m2  m t n, n2  n t

Etx* x 3E~x* x l...Ex* x 3 (4.45)

TT m.T(l) n mr( 2 ) n2 rr(t) n t

where Tr is a permutation of the set of integers (1,2,3,...,t).

A proof of this theorem for stationary random processes was originally given

in [Reed, 1962]; Miller (1968) subsequently generalized the theorem to

nonstationary, non-zero mean random processes. A discussion of both of

these results may be found in [McGee, 1971].

6 Hence from (4.44) and (4.45), the fourth moments of a zero-mean

complex Gaussian process P(t) satisfying (4.42) and (4.43) are

I EC *(t) *(s) (t') (s')] -- R(t,s)R(t',s) + R(t,s')R(t',s) (4.46)

= Et *(t) *(s)*(t')8(s')3 = 0 . (4.47)
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For the time-selective fading case, from (4.41), (4.46), (4.47),

and (4.20) the conditional fourth moment of F. conditioned upon b i(t)

is given by

E[F 4 lb (t))= 324 [ T T T r i (t - s)r (u-v)dtdsdudv]i i 4 i 0 0 0 0

3[Var Fi 2  (4.48)

where Var F. is given by (3.31) and we have used (4.17).

In a similar fashion, for the frequency-selective fading case

,t Fi4b i (t)) is given by

43 32 4RelT T T T T T
E(Flb,()) PYi etj g.(T)g. (T)

-T -T0000

fi(TT;ts)fi (','T';t',s')dtdsdt'ds'dTdT'3

3[Var F] 2  (4.49)

where Var F. is given by (3.54). In deriving (4.49) from (4.32), we

have used (4.41), (4.46), (4.47), and (4.30).

In order to evaluate EtI ) appearing in (4.40), assume, without loss

of generality, that user 1 is the i-th user (i.e., i = 1). Letting

. 1!+ (4.50):1 1 1

where I. and I! are given by (4.13) and (4.14), respectively, for the
1. 1

time-selective fading channel and by (4.26) and (4.27), respectively,

for the frequency-selective fading channel, we find that

4
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EtI.43 = EfI.4 + 41i. . + 61 2 4i + ^ ^3 )

EI + 61i(V + (1' (4.51)
1. ^ . 1)

where we have used the zero-mean condition on k(T;t) for the second step.

Noting that the last term of (4.51) has been previously evaluated in

[Yao, eq. (14)-(18), 1977], we shall concentrate on evaluating the first

two terms of (4.51). Let

Ik, i __A YkRe Ik ,. (4 .52)

where Ik,i is defined by (3.16). Then

K
K 1k,i ' (4.53)

3. k=2  k.,

which follows from (3.15). Using (4.53) in (4.51), we see that
K.

k=2 ki

K K K K
E E Z I iI,i k,i I,i
h=2 j=2 k=2 1=2 ' j k.

K K-1 K
=E(~ Z )+6~ Z E (1 2 1 23

k=2 ki k=2 j=k+1 k,i j,i

K K-i K 2 2(
E E(Iki 4 +6 Z Z E(I )EI 2 (4.54)

k=2 ' k=2 j=k+l ,i j,l

where we have used the independence of k(;t) for 2 5 k !- K and the

fourth moment properties of 0k(T;t).

F

tK
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For the time-selective fading case, from (4.52), (4.15), (4.17),

4(4.41), (4.46), and (4.47), E[Ik,i ) is given by

E 4Iki 3 24 4k T T 5T rk(t's)rk(u'v)Efk ki (k,Tk;t,s)

kl 0 0 0 0 k kkkik

f k,k,i (Tk'Tk ;uv)ldtdsdudv, (4.55)

where the expectation is over bk(t) and T From (3.10) we see that in

order to evaluate this expectation, we need to evaluate

1 T
T i ak(t-Tk) ak(s' k) ak(U- k)ak(V- k)E £bk(t'Tk)bk(s Tk)bk(U'Tk)bk(V-Tk) 3dTk"

0
(4.56)

Note that (4.56) is a function of t, s, u, and v and consequently may

only be evaluated numerically for given values of the four parameters.

Furthermore, unlike previous "moments" of a.(t) that we have encountered

up to this point, evaluation of (4.56) requires knowledge of the actual

sequence ak(t) rather than just its aperiodic correlation functions.

E Consequently, the objective of applying higher order moment space bounds

to bound Pe becomes questionable unless (4.56) can be evaluated in some

manner. One such approach is to simply bound the expectation appearing

in (4.55) so that bounds onE(k 4m be obtained, that* ~~~~~~~~k,i myb band oigta

"worst case" bounding approach is to assume that the expectation appearing

in (4.55) is upper bounded by 1 and lower bounded by 0, (4.55) becomes,

using (3.30) and (3.31),

0, best case
ECIk 4 3= (4.57)K 23[Var F i, worst case

4
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where Var F. is given by (3.31). In a similar manner, the second term of -

(4.51) may also be bounded, and hence, from (4.40), (4.48), (4.51), (4.54),

and (4.57), upper and lower bounds on ml appearing in (4.38) may be

obtained. If we use these upper and lower bounds on m1 to evaluate upper

and lower moment space bounds on Pe through use of the methods described

in Appendix B, however, we find that the results obtained are actually

slightly looser than those obtained using the second moment space bounds

described in the previous section. This looseness of the higher order

bound may be attributed to the crude bounds on the expectation appearing

in (4.55).

For the frequency-selective fading case, from (4.52), (4.30), (4.33),

(4.41), (4.46), and (4.47), EIk, 4 1 is given by

EtIki4 ) = 4 kffB(T)g (a)f S IT TEtF (k+TT j.t, S)

T T 0 0 0 0

'Fk,k,i (Tk ,Tk+ju ,v))dtdsdudvdTdo. (4.58)

As was the case for the time-selective fading channel, the expectation

* appearing in (4.58) may not be easily evaluated analytically. Consequently,

once again a simple bound on this expectation may be made in an effort to

bound E(Iki 4) and subsequently mi. However, it was found that the

resulting bounds on Pe obtained through the use of the bounds on m are

actually looser than the second order bounds obtained in Section 4.2.

0'
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4.3.2. Higher Moment Bounds for DS/SS Communications via

Fading Channels

In the previous subsection we noted that for the cases in which

multiple users are present, fourth moment space bounds on the probability

of error of DS/SSMA communications via a fading channel cannot be readily

evaluated. This observation may, in fact, be generalized to Nth order

bounds for n > 2, since evaluation of higher order bounds will require

evaluation of higher order "moments" of the signature sequences. For a

single user system, however, the above comments do not apply, since, as

--noted in the previous subsection, we are able to evaluate the fourth

moments of F. for both time-selective and frequency-selective fading

channels. In this subsection we shall consider moment space bounds for

single user DS/SS systems with fading channels.

To begin with, note from (4.20), (4.31), ani (4.32) that Fi = ReF iI

is conditionally Gaussian, conditioned upon bi(t). This follows from the

observation that the real part of a complex Gaussian random variable is

Gaussian. Furthermore, throughout all of our analysis presented to this

point, we have assumed that the fading process P(T;t) is independent of

the additive noise process n(t). Hence for a single user DS/SS system

with either a time-selective or a frequency-selective fading channel, we

may write an exact expression for the probability of error. For a single

user DS/SS system, the output of the i-th user's correlation receiver

is given by

Z. = N. + D. + F.. (4.59)
I. 3. 1 3I
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The probability of error at the decision instant t = T is then given by

(4.2). Letting h be defined as above, we find that

Pr(Z i > 01bi(t),b -i l Q(FI) (4.60)

while

Pr[Z i < 01bi (t),bi, 0 = +l) = Q(a2) (4.61)
ii., 2

where a1 and 02 are the square root of the sum of the noise variance plus

the conditional fading variance, i.e.,

01 = NoT + ECFi 2 1bi(t),b,0 = -i1] (4.62)

2
and a2 [ N0 T + E(Fi2lbi(t)bi,0 -- +1312 (4.63)

For the time-selective fading channel, from (4.21), (4.2) and (4.59)-(4.63),

the probability of error at the output of the i-th correlation receiver is

given by
2

Ne 2 22)
P = Q([- +  - r i (u)(T-u)du] (4.64)

where ri(u) is the covariance function of the i-th user's fading channel

process. The corresponding expression .for probability of error for the

frequency-selective fading channel is
Q(N O + 2Yi2 ST ^N) g(r)[Ri (T) + R 2(T)]dT] " )

N 2y.2  T 2

+ kQUI7 + - gi (T)[Ri(T) + Ri ()]2 d] " )
TO
2

N 2y. T 9 T T l2 -~_ ( . 5
+ kQU6S+- -- g('r)~I.r R.Q-]d1 ,(.5

za0T 2.0 .
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where we have used (3.54), (4.2), (4.59)-(4.63), and where gi(T) is theri
covariance function of the i-th user's fading process.

Because we can evaluate the probability of error exactly for the

single user DS/SS case, there appears to be no need to evaluate moment

space bounds on the probability of error. Nevertheless, it is of interest

to evaluate moment space error bounds in this instance since the results

*are useful in evaluating the performance of the bounds themselves for

related DS/SSMA system problems. Two such examples of related problems

are DS/SSMA systems with faded multiple-access interference and with

non-faded multiple-access interference. In the following we will evaluate

Nth order moment space bounds for a DS/SS system in the presence of a

fading channel.

In the previous subsection we presented methods for obtaining fourth

moment error bounds for a DS/SSMA system with faded multiple-access

interference. For a single user system, these same methods apply except

that the interference term I. is neglected in all of the calculations.

From (4.38), it follows that in order to evaluate Nth moment bounds

on Pe, we need to evaluate

m EQFi £ lb,(t)) .(4.66)

Two approaches are available for evaluating (4.66). The first requires

derivation of an expression for the product of real parts of complex

numbers in terms of sums of real parts of products of complex numbers

and then applying (4.44) and (4.45) to this result. This is the approach

taken in the previous subsection. The second approach makes use of the
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fact that F. is conditionally Gaussian, as noted above. To use this
3.

r. second approach, we will need the following result from [Wang and

Uhlenbeck, 1945] regarding moments of real multivariate Gaussian

distributions:

Theorem: Let X n=[XlX2,...,xn I have a zero-mean multivariate Gaussiann 1 n

distribution with covariance Etxix: = Rij.

(i) Then for m odd:

Ex . x . ... 3x = 0. (4.67)

12 3 m

(ii) For m even:

E.X. x. x. ... x. ER R . .. R. (4.68)
1'2 '2 13 i m JlJ2 j3J4 im-lm

where the sum is taken over all possible ways of dividing the m points

into m/2 combinations of pairs. The number of terms in the sum is equal

to

1,3"50'"(m-3)(m-l) (4.69)

From (4.66), (4.68), (4.69), and the observation that F. is conditionally

Gaussian, we have the following result: for n even

m. EC[Fi]nlbi(t)) = 1.3,5".(n-3)(n-l)[mEFibi(t)]n/2 (4.70)

Hence using (4.70), (4.2), and the procedures given in Appendix B, we

may evaluate the Nth moment space bounds on the probability of error of

a single user DS/SS system with a fading channel.
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In Figure 18 we have plotted upper and lower sixth moment space

bounds on the probability of error as a function of S/N for a single
0

user DS/SS system with a time-selective fading channel. In plotting

Figure 18 we have assumed that the fading channel has a triangular

2
covariance function with correlation duration 10T C and Yi = 0.05. Also

shown in Figure 18 is the exact piobability of error for this system which

was evaluated using (4.64). For the purposes of this plot we have

assumed a normalized distortion of D' = 1.0 in evaluating the moment space

bounds. Note that the moment space bounds on the probability of error are

quite tight for this particular set of channel specifications. From the form

of (4.64) we see that Pe for the time-selective fading channel is independent

of the choice of signature sequences used. Following a line of reasoning

p identical to that given in Section 3.4 in discussing the time-selective

fading channel, we may conclude that our results are valid also for a

*PSK system using a Rician fading channel.

F In our discussion in Section 3.3 we noted the relative importance

of frequency-selective fading channels as compared to time-selective

fading channels for SSMA systems. For the remainder of this subsection

* we will present results only for a single user DS/SS system with a

frequency-selective fading channel. In Figures 19 and 20 we have

plotted eighth moment bounds on Pe versus S/N0 for a DS/SS system with

*a frequency-selective fading channel having a triangular channel

2
covariance function for two values of Yi In plotting these figures

4
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we have assumed a correlation duration of 20Tc and a normalized distortion

of D' = 1.0 and have used an m-sequence of length 127 with its LSE/AO

2
shift register loading. Note that as Y is increased from 0.1 to 0.5

the moment space bounds become less tight. This looseness in the bounds

is to be expected for large values of y.2 because of the strong dependence
2

of m1 on Var F. (see (4.69)) and consequently 
on the parameter 'i

(see (3.31) and (3.54)).

- In order to compare the tightness of various orders of bounds, in

Figure 21 we have plotted fourth moment, sixth moment, and eighth moment

space bounds on the probability of error as a function of 6/N0 for the

same DS/SS system parameters and channel characteristics used in plotting

Figure 19. Generally speaking, for values of 6/N0 less than 10 dB,

fourth moment bounds are tighter than the higher order bounds, For larger

values of 6/No, though, only the eighth order bounds do not "level off."

This phenomenon, first observed by Yan (1975), may be simply explained

using the results of Appendix B. In Appendix B we note that for values

of 6/N0 less than a certain critical value SNRc, the plot of k2 (z)

U L
versus k (z) is convex n for any value of D'. To evaluate Pe and Pe

for SNR < SNRC, we need to evaluate m1 = EtFinibi(t)], take the nth root

of mi, and then use this result to find the upper and lower bounds on P
e

by the equations

Peu Elk2 (mll/n)3 (4.71)

L k2(D') - k2  (O) + k() (4.72)
e k1 (D') - k2 (0) 1 2

L2
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where the expectation is over b.(t). From (4.69), however we note that

1 < 3_ <rl 5< rl0-5(4.73)

and consequently that
I

m1< m1< 1 18 (4.74)

where

m1 = [EFni nbi(t))]1/n (4.75)

n

Using (4.74) in (4.71) and (4.72), we see that for SNR < SNRC. the

lower order bounds on P are actually tighter. We may conclude that
e

unless a "leveling-off" effect is observed, n-2 order bounds are tighter

than n order bounds.

U In the previous section we comented that for fading channels, Nth

moment space bounds are somewhat insensitive to the exact value of the

normalized distortion being used to evaluate the bounds. To illustrate

this insensitivity of the bounds on D', eighth order moment space bounds

were evaluated for a DS/SS system with a frequency-selective fading channel

2
for a correlation duration of 20Tc, y = 0.05, and for three values of D'.

As D' was varied from 0.5 to 10.0, the error bounds varied by less than

5 x 10- 5 %, for the case considered. Thus in most cases of interest,

we may apply any of the methods suggested in the previous section to

bound D' and still obtain approximately equivalent error bounds.

. .
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CHAPTER 5

SUMMARY AND CONCLUSIONS

This study has investigated the problem of analyzing the performance

of a biphase DS/SSMA system operating over a fading channel. The

receiver model used throughout this analysis has been a correlation

receiver; a receiver structure which is not optimal for signaling in the

presence of multi-user interference and fading but one that is typically

used in implementing DS/SSMA systems. Two measures of system performance

were considered: average signal-to-noise ratio and average probability of

error. A third system performance measure considered for DS/SSMA systems

operating over AWGN channels -- worst case performance -- was not treated

here since it is easily shown that for a channel undergoing any degree

of fading, the worst case probability of error is always I for equal

a priori probabilities of the transmitted data bits.

The study began with a review of various models of fading channels.

From physical and phenomenological considerations we have shown how

fading may be modeled as a complex Gaussian random process. With this

assumption, a general fading channel model was developed which could be

modeled as a time-varying linear filter whose time-varying impulse

response is the fading process. Statistical phenomena observed

for actual radio channels led us to consider a specialization of the

* general fading channel model known as the WSSUS channel. This channel

model was characterized by the fact that it is the simplest channel

model of physical interest exhibiting both time- and frequency-selective

0

a
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behavior. A review of various techniques for characterizing the WSSUS

channel in terms of observable effects was presented next. We then noted

that by making certain additional assumptions about the covariance

functions of the WSSUS doubly-spread channel, the WSSUS channel further

simplified to two types of singly-spread channels -- time-selective

fading channels an, frequency-selective fading channels -- and to a channel

known as a nondispersive-fading channel. In discussing these various

channel models we noted the importance of assuming a specular-plus-diffuse

fading channel model as a typical fading channel model over which DS/SSMA

: - communications could be conducted. As was noted in Chapter 3, a channel

exhibiting only diffuse fast fading renders a DS/SSMA system useless due to

the lack of phase-reference needed for coherent communications.

5 After a review of fading channel models we then considered analysis

of the average signal-to-noise ratio of a DS/SSMA system communicating

over a WSSUS Rician fading channel. It was shown that with such a

E rchannel, the output of the correlation receiver matched to the i-th user's

code waveform consisted of four components: the i-th user's direct (non-

faded) signal, a faded version of the i-th user's transmitted signal, a

multiple-user interference term consisting of direct and faded signal

components, and an AWGN term. Treating the data symbols, phase shifts,

and time delays of the other K-1 users as random variables with given

*distribution functions, we then defined the average signal-to-noise ratio

in terms of expectations of the four components at the output of the

correlation receiver. In general it was found that the resulting
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expectations could not be evaluated directly in terms of the correlation --

functions of the fading channel unless certain additional assumptions

about the covariance function of the channel were made. Hence, we

considered the two singly-spread channels -- time-selective fading

channels and frequency-selective fading channels. For both of these

subclasses of WSSUS channels we were able to evaluate expressions for

the average signal-to-noise ratio in terms of the covariance function of

the fading channel, the continuous-time partial crosscorrelation functions

of the K users' code waveforms, and the AWGN spectral density. For

specific channel covariance functions, the resulting expressions become

functions of the discrete aperiodic autocorrelation functions of the

code signature sequences. A parameter of the channel covariance function

known as the correlation duration was defined and was then used as the

independent variable in plotting SNR. for both time- and frequency-

selective fading channels. It was found that the general trends of the

plots could be explained by exploiting the duality existing between the

two singly-spread channels as well as by noting the effect of the

integrator in the correlation receiver on the performance of these two

channels. We noted that most fading channels occurring in practice exhibit

some degree of frequency-selectivity and that this phenomenon, together with

the observation that SSMA systems occupy very large bandwidths, led us to

conclude that a frequency-selective fading channel is a more realistic fading

channel model for DS/SSMA systems than a time-selective fading channel model.
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We then examined the performance of single user DS/SS systems over

both classes of singly-spread channels and compared this performance

* to that of a PSK system operating over the channel. We found the DS/SS

system performance identical to that for a PSK system for a time-selective
f

fading channel, but the DS/SS system outperformed the PSK system for a

frequency-selective fading channel. This performance difference in the

' latter channel may be attributed to the frequency-diversity achieved

by the DS/SS system through the use of a signalling set with an improved

autocorrelation function.

-. By randomizing the code signature sequences in the DS/SSMA system

we were able to obtain approximate expressions for the average SNR which

were independent of the actual choice of signature sequences used. These

expressions are therefore useful in the preliminary design of a DS/SSMA

system using a fading channel. It was found that for maximal connected

sets of m-sequences employing either LSE/AO or AO/LSE shift register

loadings, the difference between the actual SNR and the approximate value

of SNR was negligible.

After considering SNR as a performance measure we next considered

average probability of error as a measure of system performance. At the

outset, it was noted that due to the complicated form of the resulting

expression for the average probability of error, it would be desirable to

obtain bounds on the probability of error. Because of the success of

its use in bounding error probability in other types of digital communi-

cation systems, the moment space bounding technique was used to obtain
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bounds for DS/SSMA communication via fading channels. Based on results

in the published literature, we chose to use Nth moment space bounds,

bounds which require evaluation of the Nth moment of the sum of the faded

version of the i-th user's transmitted signal plus the multiple-access

interference. For the second moment bound, we were able to evaluate the

probability of error bounds using results from the analysis of the signal-

to-noise ratio at the output of the i-th user's correlation receiver. It

was noted that, in general, the second moment error bounds were too loose

for practical application. Hence, we then considered higher order moment

bounds in an effort to obtain tighter error bounds. For n > 2, however,

we were unable to directly evaluate the nth moment of the sum of the faded

version of the i-th user's transmitted signal plus the multiple-access

interference and consequently we were unable to obtain tighter error bounds.

It should be noted that much of the difficulty in applying the moment space

bounding technique to DS/SSMA communications via fading channels is due to

the relative complexity of the singly-spread fading channel model being used

throughout this study. We conjecture that for simpler channel models, such

as the recently developed three path fading channel model mentioned in

Chapter 2, it would be possible to evaluate moment space bounds on the

probability of error. Of course, such a channel model is less general than

the singly-spread channel model.

In contrast to the results obtained for the multiple-user case, we

were able to directly evaluate the probability of error for a single-

user DS/spread-spectrum system for either a time-selective or a frequency-
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selective fading channel. To investigate the performance of Nth moment

1 E space error bounds for fading channels, we considered the single-user

.- DS/spread-spectrum system and evaluated the fourth, sixth, and eighth moment

error bounds. We found that for small values of SNR, the lower moment error

bounds yield the tightest bounds, but for larger values of SNR and D', only

the higher moment bounds yield good results.

i..

I
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APPENDIX A

AVERAGE SIGNAL-TO-NOISE RATIO RESULTS FOR LARGE VALUES OF THE

FADING POWER TRANSMISSION COEFFICIENT

In Chapter 2 we made mention, in passing, of the recent development

of a three-path fading channel model for line-of-sight microwave channels

([Rummler, 1978], [Rummler, 1979]). In the literature describing this

channel model, mention is made of several actual channels exhibiting

fading to the extent that the fading power transmission coefficient y for

2
these channels is on the order of y = 0.5. In Chapter 3, we have presented

[2

__signal-to-noise ratio data for channels in which y 0.2, primarily for the

reason that it is believed that the effects of the synchronization sub-

system on the communication system performance are no longer negligible
-' " 2

for values of Y > 0.2. For line-of-sight applications, however, other

techniques (e.g. atomic clocks, auxiliary synchronization channels) may be

used to obtain synchronization information so that reliable communications

may be achieved. In this appendix we present additional SNR data for

2
channels in which y > 0.2.

In Figure Al we have plotted SNR as a function of the correlation

duration of the channel for a time-selective fading channel with a

triangular covariance function. In plotting Figure Al we have used a

maximal connected set of six m-sequences in their ISE/AO phases (see

* Chapter 3 for details). In Figure A2 we have plotted the corresponding

. results for a frequency-selective fading channel with a triangular

covariance function. We see from these two plots that the increased

amount of fading simply reduces the average SNR.

-
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In Figure A3 we have plotted SNR versus correlation duration for

single user DS/spread-spectrum and PSK systems operating over a frequency-

selective fading channel with a triangular correlation function for two

2 2
values of y . Note that for these larger values of y , the SNR at the

output of the PSK system is so small as to make the PSK system virtually

useless, while for values of correlation duration greater than 60 Tc, the

degredation of the DS/spread-spectrum system from the ideal AWGN channel

signal-to-noise ratio is less than 0.5 dB.

-

0*

21
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APPENDIX B

Nth MOMENT SPACE BOUNDS ON THE PROBABILITY OF ERROR

B.l Introduction

In Chapter 4 we discussed the isomorphism theorem regarding relation-

ships between arbitrary moments of random variables and showed how this

theorem could be used to obtain bounds on the probability of error of a

DS/SSMA system with a Rician fading channel. In using this theorem, we

derived the Nth moments of the fading terms and then proceeded to plot the

probability of error bounds directly. In this appendix we will derive

analytical expressions for bounds on Pe from knowledge of the Nth moment

of the fading terms and the normalized distortion D'. The resulting

expressions for probability of error bounds were used in Chapter 4 to plot

the actual error bounds. Many of the results to be presented were previously

obtained by Yan (1975) but have been refined here for use with fading

channels.

To begin with, instead of concerning ourselves with the details of a

DS/SSMA system with a fading channel, we shall use a simpler (but more general)

model of a digital communication system with interference and noise in deriving

the moment space error bounds. The modifications necessary to treat DS/SSMA

systems with fading channels are straightforward and will not be discussed

here (see Chapter 4). For a transmitted data bit a0, assumed to take on

*value [+l,-l] with equal probability, the received signal at the output of the

receiver at the decision instant t - T is given by

y = a h + z + n (B.1)
0

where h may be thought of as the response of the channel, sampled at time

t T due to the transmission of data bit a0, z is the interference component,
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I" 2
and n is an additive Gaussian noise component with variance a 2 The inter-

ference component is assumed to have an unknown distribution function with

finite distortion D such that

I z[ D. (B.2)

U The probability of error at the output of the receiver is given by

P= Pr~y C 01a 0 = +IQ + jPr~y a 01a 0 = -1)

-E Q(-h-) + JQ()-z (B.3)

where the expectation is over the interference term z.

To derive Nth moment space bounds on the probability of error of this

digital communication system, we will let k1 (Z) = zn and let k2 (z) =

i h+z. h-z
-Q( -) + Q(-). Furthermore, we will assume that the moment

a QaA
Li  Etkl(z)) is known. Noting that m2 = Elk 2 (z)) = Pep we may use the

Uisomorphism theorem of Chapter 4 to derive bounds on P In order to apply
e

this theorem, however, we first need to evaluate the convex hull X of the

curve 0 of k2 (z) versus k (z). From calculus, we have the following results:S( i) A function f(x) is convex U iff f"(x) 0.

(ii) A function f(x) is convex U iff f"(x) Z 0.

Hence, in order to evaluate the convex hull of a, we need to evaluate the

first and second derivatives of r(z) k2 (kl(z)). Simple differentiation

shows that (.-) 2  (h+z)2
22  2

1 e -e 2 a A u(z)
r'(z) = - n-1 Kn- (B.4)

rip (Z) zu'(z) - (n-l)u(z) (B.5)n 2n-l
z
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where

K 2na,2VJ (B.6)

and
2 2(h-z) (h+z)

2 2
u(z) e 2a -e2a (B. 7)

If we collect identical terms appearing inside the brackets of (B.5), r"(z)

becomes
r 1(z) P(z)F(z) (B.8)

where -(h+z)

P(z) = 2a 2n2 (B.9)

and 2zh

= z~ 2  2 e [zh- 2  2
F (z) zh+z+ (n-l1)a + e [hz-(n-I)a I (B-10)

An alternative form of writing F(z) is to expand the exponential term into

a Taylor series expansion, multiply by the appropriate powers of z appearing

within the square brackets and then collect identical terms. If we do this,

(B-10) becomes

F(z) F F(z) + F2(Z) (B-11)

* where
2 2

F (z) =2(2-n)[zh + -2- (B.1.2)

22 a

2z k:

k-I.

h~~,1 )-l) h 2(k2n+4)
C~k~n, + [ 1(B-14)

aT 2 (k+l)(k+2)

As we will see in the next two sections, depending upon the value of n, either

* (B.8) and (B.10) or (B.8) and (B.11) is more convenient to use ij v~aluating

the convexity of C.
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Finally we will need to know the following results on the limiting

values of r'(z) and r"(z):

r'(z) > 0 for z > 0 (B.15)

lim r'(z) = 0 (B.16)

-- 4__ 2 -1eh2a 2

6na a h "a

lim r"(z) = (B.17)
u Z

-  
0

[ Lk- Z~ n3

All of these results may be derived from the defining equations for r'(z)

and r"(z) and L'Hopital's rule. In the next two sections we will consider

in detail the convexity of C, for n = 2 and for n z 3, respectively. We

will then use these results to obtain analytical expressions for bounds

on P in terms of the Nth moment of z and the distortion D.

B.2 Second Moment Error Bounds

In the previous section we noted that we could write an expression for

P r"(z) as either P(z)F(z) or P(z)[FI(Z) + F2 (z)]. Because of the form of

Fl(z) it is more expedient to use the latter expression for r"(z) for n = 2.

Hence for n = 2, we have that

r2(z) = P(z)F2 (z)

C2zh k

=P(z)z - C(k,2, - ). (B.18)
k-l k.

Because kl(z) and k (z) are both symmetric about z 0 0, in applying the

isomorphism theorem to bound P e we need only let I = [0,D], i.e., only

4 i"positive values of z need be considered in evaluating the convexity of C.

From (B.9) and (B.18), we see that for n = 2 and z z 0, the sign of r"(z)

[j
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h

is completely determined by C(k, 2, ), which is a monotonically decreasing

function of k with a maximum occurring at k 1. Hence we note that

r 0, h
h 2  

2k

C(k,2, h (-I) + hk / (B.19)
a- 2 (k+l)(k+2)ha 0, z > J5 for some k < k

where k is the smallest integer such that

h2  2k I

(-I) + 2 ( 0. (B.20)2 (k 1 )(k +2)

From (B.18) and (B.19) we have the result that if h< , r3 is

convex n for all values of z. For a / , using (B.18) and (B.20) we see

that for small values of z, C is convex U. For larger values of z, however,

and for k Z kl, C is negative and hence r"(z) may be less than zero. From

(B.17) we see that, in fact, for large enough z and for . >T, r"(z) i-

negative. Consequently for Z 3, C, is initially convex U and then

becomes convex n.

In Figures BI and B2 we have plotted 0 for h1 < j and r 3 IT, respectively

for n = 2 and for arbitrary values of D. In plotting these two figures we

have used the results of the previous paragraph to determine the convexity of

* C-. In Figure B2 we have labeled four points on 0 to aid in determining the

moment space probability of error bounds. The point zI is defined to be the

point satisfying the equation

r"(z I) = 0 (B.21)

The point z2 is the point on C, such that a line drawn from the point

(kI(O),k2 (0)) is tangent to C at z2, i.e., z2 is the solution to the

equation
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k (Z)2

k (z)

* Figure Bi, Plot of C-for second moment space bounds (~<V v1 .

4L0

L



170

k2 (z)

k1(z)
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h+z 2  h-z 2
(-a-) + Q(-) 2Q(-)l

~~2 2
z2  (hz 2) (h+z )2

-. 2" 2

.: - -e a . (B.22)

4az2fv

The point z3 is defined to be the point on C such that a line drawn from

(kl(D),k2 (D)) is tangent to C at z3, i.e., z is the solution to the equation

1 2 3- 3h+ LD h+z 3  h-_z 3 ),i 1 Q(- )+ Q( - Q(--) " Q(--

2 22 QCa2 (D2-z3)

(h-z 3 ) 2  (h+z3)
2

= 1 fe 2a2  -e 2a 2  (B.23)

4az3 /T

N Finally point z4 is the point on C, which intersects with a line tangent

at (kl(0),k2 (0)), i.e., z is the solution to the equation

1 2__

h+z4  h-z4  h 1 h 2a (B.24)
E Q(---) +Q(-.--) -2Q(-)3 - - e

2z 42(a 2 a 2 e2(B.24

4

In (B.24) we have used the fact that r' (0) is equal to the right-hand side

of (B.24), which follows from (B.4) and a simple application of L'Hopital's

rule for derivatives.

Note that all of the four points zI through z4 are solutions to single

variable nonlinear equations. Hence they may be solved by any number of

methods including the bisection method, the false-position method, or Newton's

method. Once these points are determined, we may directly write down

- -
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equations for the moment space lower and upper bounds on the probability of

error through the use of the isomorphism theorem. In Tables BI and B2 we

summarize these equations for lower and upper bounds, respectively. Note

that in general, these bounds are functions of h/a, D, and mi.

B.3 Nth Moment Error Bounds

We may easily extend the results for second moment error bounds to Nth

moment error bounds for n even and n 2. However since Fl(z) is no longer

identically zero for n Z 2, we should not expect that the convexity of a be

identical to that of the n = 2 case. In the following we will show that this

is, in fact, the case.

For large values of z we will use the expression r"(z) - P(z)F(z) in

determining the convexity of C. From the observations made in the previous

section we need only consider z Z 0 in determining the convex regions of C.

From (B.15) and (B.16) we may conclude that for large z, r"(z) is negative

and hence a is convex n for large z. For smaller values of z we will use

the expression r"(z) = P(z)[Fl(z) + F2 (z)] to determine the convexity of 0.

Since we are only considering non-negative values of z, from (B.9),

P(z) 0 and thus the sign of r"(z) is determined by the sign of the sum

F1 (z) + F2 (z). For n > 2, FI(z) is always negative and from (B.14) we see

that At least the first 2n-4 terms of F2 (z) are negative. Thus for small

enough z and , the sum Fl(z) is negative and hence r"(z) is negative for
a1

h.small values of z. For larger values of z and - it may be possible that

the k > 2n-4 terms of F2 (z) will dominate the k : 2n-4 terms of F2 (z) as

h...il as FI(z) so that FI(z) + F2 (z) > 0 for large values of z and -. We

may conclude from this that, depending upon the value of -, C is either
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LSNR P m D

.< F h + h all all
€a

__7 IQ (-7 -g

I - + all D z

h h

10 a + ( AVM- :.z 3 z I D! zj

- [Q ( ) h+z 3 ) ]3 3)

m-Z 3 2h+z 3  h-z 3
]+ I( + Q3A7 DzD2 2 3 1 4

[D1 +Dh-

Ih+D + Q( -) 2Q(h)]m + Q(h all D z4
12D a :a a a"l i<k

Table BI. Second moment lower bounds on P
e

[0
L

K"

*. . . . . . . . . . .
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jSNR PeU D

[3 + Q( 7)] all all -

Q +D + Q h-D) + Q all D!

2Da2

h+z hzh
2[( + -~-2 2Q( )m (~vz z D 4

2z2

a1>v h +,fA7 + m

Table B2. Second moment upper bounds on P.
e
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convex n for all values of z or C- is initially convex n, then convex U,

-W K and finally convex fl as z varies from zero to infinity.

In order to determine the critical value of h (SNRc) at which the
ar c

second case occurs, we will again Ponsider the equation r"(z) = P(z)F(z).

T Note that the second case results from the first case when the maximum

of F(z) is greater than zero. In equation form this condition is equivalent

to requiring that

dF(z )
P 0 when F(zp) 0 (B.25)

dz p

where z is the point at which the convexity of C changes. From (B.10) we

pphave 2z h

dF(2 2h 22 2
dz [h+2z + [h-2z +- (z h-Z - (n-l)a )]e 0 (B.26)
dz p p 2 p p

* and

2z h

2h2 z2 2 a22
F(Zp) = [z h +z + (n-l) 2 1 + e [z h-z 2 - (n-l)a2  -- 0. (B.27)

p p p p p

2z h

2
4 Solving for e in (B.26) and (B.27) and equating the two results, we find

that z is the solution to the quartic equation
P

4 2 22 4z + [(2n-l)=2 - h ]z + a (n-1)(n-2) = 0 . (B.28)
p p

2Note that (B.28) is actually a quadratic equation in the variable z and
p

hence has a solution given by

4'

4 i
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2 h 2  2

[--= - (2n-l)] + [(-+ (2n-l)) -4(n-1)(n-2)l ". (B.29)p 22,

In order for a solution to exist, z must be real, i.e.
p

h2

-e- (2n-l) + 14(n-1)(n-2) . (B.30)

hNote that (B.30) is just the condition on h for C, to be both convex n and

convex U. Alternatively, if we define SNR as

SNR [(2n-l) + /4(n-l)(n-2) 12, (B.31)
Ch

then C, is convex n for all values of z if < SNR otherwise 0 has both

convex n and convex U regions.
h -_

In Figure B3 we have plotted a for various values of and D. Using

these plots and the value of m1 = E[k 1 (z)], we may easily write down equations

for lower and upper bounds on P and have done so in Tables B4 and B5,
e

respectively. Note that the error bounds are dependent upon the values of

the points z1 through z7 depicted in Figure B3. The points z2 and z are the

solutions to the equation

r"(z) - 0 (B.32)

for h SNR . The point z is the point on C- such that a line drawn from
a c 3

the point (kl(0),k2 (0)) is tangent to C at z3, i.e., z 3 is the solution to

the equation

h+z h-z
13 3h

--- LQ(- ) + Q(-) - 2Q(h) = r' (z3) . (B.33)
2z3

*•
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SNR < SNR [Q(-)+ +Q(-) D 2Q(h)] [-II +Q(h-) all all -

c CT ~2Dn a

h+D h-D mh +Q h
[Q( __ + QQ) 2Q ()I [_ +q) all D!5 za a 2n 3

h+z h-z h
33 h --1[Q(- +Q(- 2 2Q()- + Q(-) 5a a2a n 3

3z 4

n

SNR;>-SNR aQ (3 +Q- A 31/m1!D

h+z3 h- z3 ml n z
[Q(- +Q(- -2 Q()-+ Q(-)~ Zaaa 2z n a) /M 3

* In n

+ - - r, Z< TM 5 z Z4< D-Sz6

h+D h-D h~ 7  h- 7IQ(- +Q(-) ( - Q(-- )I
n

z D
7 1

mh+D h-D

+Q- IQ(- 0:3-)+ -)

nn a

*~~~~~~~~ TabD B3 t oetloe onso
7e
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-SNR pe m D

n n

ISNR< SNR Q + Q  ( ) all all

-n- n

:1: - + Q 1 ! 7

h+D h-D h+z7  h-z7
[Q(-) + Q( ( ) - Q( Q) nz D! zar a a 1 5n

mlDn z 7 < D
1 l h+D h-D"[ n n +  I[Q(-)- +Q(-1]

S: 2 (D n_ z n7a)
SNR> SNR 7

n n
h+V h -V nj

1 1!

h+z h-z h+z h-z.
5 5 1

z I  m z5

n D> z 5MI  z 1 h+zI  h-z ,)

2(z 5 z1

n n
h +/m_. h - n

a aI6 Q +

Table B4. Nth moment upper bounds on P
e

-.

I"
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The point z6 is defined to be the point on 0, such that the line drawn from

the point (kl(0),k2 (0)) through the point (kl(z3 ),k2 (z3)) intersects C at

z i.e., z is the solution to the equation

h+z6  h-z6
r'(z [Q + Q-) -2Q(- A (B.34)

2z

The point z7 is the point one. such that a line drawn from (k1 (D),k 2 (D))

is tangent at z7, i.e., z7 is the solution to -

h+ h+z7  h-z7
Q( ) + Q Q

r'(z 0 a 0 (B.35)
1 2 [Dn - zn]

Finally the points z1 and z5 are defined to be those points on C such

that a line drawn from zI on C, to z5 on C, is tangent at both points and that

C- does not intersect the connecting line, i.e., zI and z5 are the solutions

to the equations

r'(zl) = r'(z 5 ) (B.36)

and h+z I  h-zI  h+z5  h-z5

Q(--) + Q(-)-Q(-) -Q(-)
r'(z) =n n (B.37)

zI1 - z 5

Because (B.32) through (B.35) are one variable nonlinear equations,

they may be solved using any of the methods listed in the previous section.

Equations (B.36) and (B.37) however are two variable nonlinear equations.

One method of solving this set of equations is to use a Fibonacci search

([Aoki, 1971], [Wilde, 19643) to search over z while holding zI fixed,

where we are trying to minimize the quantity
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n )n +pQh+z I h-z h+z 5)-(h-z 5]. (.8
Or d = (z 5)z~ 5 r (z~z 1 1 ((~ QQ(-5

Further details on finding z1 and z 5 may be found in [Yan, 19753 for the

fourth moment case.
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